

Lighting

Lighting can have a big effect on how an object looks.

Modeling the effect of lighting can be used for:

Recognition – particularly face recognition Shape reconstruction Motion estimation Re-rendering / Re-lighting

...

<section-header><section-header><section-header>

The light field

$R(X, Y, Z, \theta, \phi, \lambda, t)$

- · Known as the plenoptic function
- If you know *R*, you can predict how the scene would appear from any viewpoint.
- Common to think of lighting at infinity (a function on the sphere, a 2D space)
- Usually drop λ and time parameters

Light sources Basic types • point source • Distant point source • area source - a union of point sources More generally • a light field can describe *any* distribution of light sources What happens when light hits an object?

What happens when a light ray hits an object?

Some of the light gets absorbed

- converted to other forms of energy (e.g., heat)
- Some gets transmitted through the object
 - possibly bent, through "refraction"
 - · a transmitted ray could possible bounce back
- Some gets reflected
 - as we saw before, it could be reflected in multiple directions
 (possibly all directions) at once

Let's consider the case of reflection in detail

Constraints on the BRDF

Energy conservation

Quantity of outgoing light ≤ quantity of incident light

 integral of BRDF ≤ 1

Helmholtz reciprocity

reversing the path of light produces the same reflectance

BRDF models

Phenomenological

- Phong [75]
- Ward [92]
- Lafortune et al. [97]
- Ashikhmin et al. [00]

Physical

- Cook-Torrance [81]
- Dichromatic [Shafer 85]
- He et al. [91]

Here we're listing only some well-known examples

Shape from shading

Input:

- Single Image

<u>Output:</u> - 3D shape of the object in the image

<u>Problem is ill-posed:</u> many shapes can give rise to same image.

Common assumptions:

- Lighting is known
- Lambertian reflectance + uniform albedo
- Boundary conditions are known

Surface Normal

$$N = (n_x, n_y, n_z)^T$$
A surface $z(x, y)$
A point on the surface: $(x, y, z(x, y))^T$
Tangent directions

$$t_x = (1, 0, z_x)^T \qquad t_y = (0, 1, z_y)^T$$

$$N = \frac{t_x \times t_y}{||t_x \times t_y||} = \frac{1}{\sqrt{z_x^2 + z_y^2 + 1}} (-z_x, -z_y, 1)^T$$

Shape from shading

$$I(x,y) = N \bullet L = \frac{-l_1 z_x - l_2 z_y + l_3}{\sqrt{z_x^2 + z_y^2 + 1}}$$
Assume that $L = (0,0,1)^T$
And get that $I(x,y) = N \bullet L = \frac{1}{\sqrt{z_x^2 + z_y^2 + 1}}$
Two unknowns $z_x \ z_y$

Shape from shading

$$I(x,y) = N \bullet L = \frac{1}{\sqrt{z_x^2 + z_y^2 + 1}}$$

But both unknowns come from an integrable surface: Z(x,y) thus we can use the **integrability** constraint:

$$z_{xy} = z_{yx}$$

Shape from shading
$$I(x,y) = N \bullet L = \frac{1}{\sqrt{z_x^2 + z_y^2 + 1}}$$
 $\sqrt{z_x^2 + z_y^2 + 1} = \frac{1}{I(x,y)}$ $\sqrt{z_x^2 + z_y^2} = \sqrt{\frac{1}{I(x,y)^2} - 1}$ $\|\nabla z\| = \sqrt{\frac{1}{I(x,y)^2} - 1}$ is called Eikonal equation
can be solved using variation
of Dijkstra's algorithmNeed to know the extrema
points for this

Solving the equations
$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \mathbf{L}_1^T \\ \mathbf{L}_2^T \\ \mathbf{L}_3^T \end{bmatrix} k_d \mathbf{N}$
$ \begin{array}{cccc} $
$\mathrm{G}=\mathrm{L}^{-1}\mathrm{I}$
$k_d = \ \mathbf{G}\ $
$\mathbf{N}=rac{1}{k_d}\mathbf{G}$

Color images The case of RGB images • get three sets of equations, one per color channel: $I_{R} = k_{dR} \text{ LN}$ $I_{G} = k_{dG} \text{ LN}$ $I_{B} = k_{dB} \text{ LN}$ • Simple solution: first solve for N using one channel or grayscale • Then substitute known N into above equations to get k_d s $k_{d} = \frac{\sum_{i}^{i} (L_{i}N^{T})^{2}}{\sum_{i}^{i} (L_{i}N^{T})^{2}}$

Where do we get the lighting directions?

Computing light source directionsTrick: place a chrome sphere in the sceneImage: Colspan="2">Image: Colspan="2"Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2"Image: Colspan="2">Image: Colspan="2" Image: Colspan="2"

Results...

Limitations

- · doesn't work for shiny things, semi-translucent things
- · shadows, inter-reflections are difficult
- · Single light source illumination
- · camera and lights have to be distant
- · calibration requirements
 - measure light source directions, intensities
 - camera response function

Newer work addresses some of these issues

Some pointers for further reading:

- Zickier, Belhumeur, and Kriegman, "
 <u>Heimholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction</u>," IJCV, Vol. 49
 No. 23, pp 215-227
 Hertzmann & Seltz,
 <u>Example-Based Photometric Stereo: Shape Reconstruction with General, Varying
 <u>BRDFs</u>," IEEE Trans. PAMI 2005
 </u>
- Basri, Jacobs and Kemelmacher <u>Photometric Stereo with General Unknown Lighting</u>, International Journal of Computer Vision (IJCV) 2007

Hertzmann & Seitz,

Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs." IEEE Trans. PAMI 2005

