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1 Introduction

The remote sensing and computer vision communities shaoenanon goal of extracting useful
information from raw imagery. Both communities have exigdiseveral trends that support the
increasingly timely, cost effective, accurate, and effechutomated extraction of information from
raw imagery that include increasingly powerful, affordgbdnd available computer hardware; in-
creasingly sophisticated software tools, both commeeridl open source, that have a proven track
record; a growing community of computer knowledgeable sjs@nd an increasing proliferation of
sophisticated sensors, both active and passive, rangingifandheld digital cameras to commercial

satellites with drastically improved spatial, radiometand temporal resolution.

While the computer vision (CV) community has many of the sgwas as the remote sensing (RS)
cummunity, its applications are not focused in charadtegithe earth’s surface but include a much
wider range of applications. Computer vision applicatiortdude industrial, biomedical, scientific,
environment exploration, surveillance, document undedihg, video analysis, graphics, games
and entertainment. Computer vision systems have beenndekitpat can control robots or au-
tonomous vehicles, inspect machine parts, detect andmaephuman faces, retrieve images from
large databases according to content, reconstruct lajgetskor portions of cities from multiple

photographs, track suspicious people or objects in vidau$ more.

Remote sensing systems work on multi-spectral images dpaties image data at specific frequen-
cies across the electromagnetic spectrum. These imagtaircomultiple bands, some from light
frequencies visible to humans and some from frequenciesnaene visible light range, such as in-
frared. Computer vision systems have been developed ftypas of images, but mainly work with
single-band graytone images, three-band color imagessiagte-band depth images, sometimes
registered to color images of the same scene. In spite oflifféssence, many of the same tools can

be used in both computer vision and remote sensing.

Table 1 shows a simplified classification of computer vismold, which are available in both open-

source, such as Intel's OpenCV library in C++ [15] and NIHsalgeJ library in Java [3], and



Basic Tools Example Applications
filters noise suppression
edge detection
texture description
segmentation object recognition
image retrieval
medical image analysis
interest operators image matching
motion analysis
object recognition
image retrieval
photogrammetric operations3D reconstruction

Table 1: A Simple Classification of Computer Vision Tools

commercial packages such as Matlab with its Image Proaeasith Signal Processing toolkits [14].
Filter tools, which should be familiar to most RS workerss ased to enhance images or extract
low-level features. Sharpening, brightening, noise remhogdge detection, and texture feature
extraction are common filters. Interest operators, whickelmecome popular in CV over the last
decade, are operators that detect interesting points df ieg@ns in images for purposes of image
matching or object recognition. The best-known such operatthe SIFT operator [13], which
detects interest points and describes them in a 128- dimsadsiector that is invariant to translation,
rotation, scale, and somewhat invariant to illuminatiomepoints detected by SIFT stand out as
interesting, because they are local minima and maxima dfexeince of Gaussians operator applied
at multiple scales. The SIFT operator can be used to find @stat of matching points across pairs
or sequences of images. SIFT can be used along with the RANBfgtithm [11] for determining
the best homography that maps the points in one image to mgtpbints in another. This would
be helpful to RS workers who need point correspondenceddaalate 3D depth images from pairs

of 2D images for registration of satellite imagery.

Segmentation operators partition an image into nonoveitgpregions, each of which is homoge-
neous in one or more features and maximal in terms of this pemety. Segmentation is important
in both CV and RS, where it can be used to find areas that carabsiftdd according to land use.

Although segmentation algorithms include such old staswlas split-and-merge [18] and region
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growing [17], algorithms based on different forms of clustg have won out in recent years. Clus-
tering algorithms can operate on gray-tone images, colagas, or multi-spectral images, making
them easily adaptible to the RS domain. In this paper, wedgticribe the most popular and useful
clustering algorithms including K-Means clustering, Ecja¢ion-Maximization (EM) clustering,
watershed segmentations, graph cuts, and mean-shifeghgt We will also discuss interactive
clustering algorithms that allow some user input in ordesggment out objects of interest that are

not homogeneous in any feature but are important to the user.

Clustering algorithms can cluster any objects that can pesented by property vectors. In this
paper, we will assume that the objects are pixels from an énzagl the property vectors contain
numeric attributes of those pixels. In the simplest casaag tbne image, each property vector
contains only a single gray tone. For color images, propertyors usually represent the particular
color space in use, such as RGB or HSV. For multispectral @pathe property vector of a pixel

would contain the value for that pixel in each of its bandsadidition to this “color” information,

other attributes describing the location or texture of a&bixay also be added.

2 K-means Clustering

K-means clustering [23] is the simplest and most-used et algorithm. Given an image of
pixels, the goal is to partition the image inko clusters, where the value & must be provided by
the user. Clusters provide a grouping of the pixels that peddent on their values in the image,

but not necessarily on their locations in the image unlesation is a specified property.

Let X = {z1,...,zn} be a set ofN image pixels, and leV'(z;) denote the property vector

associated with pixet;. The K-means algorithm has the following steps:

1. Parameter Initialization: The means of each of th& clusters are initialized to values of
potential property vectors. In the classic K-means algorjtthe value of each element of

the property vector is chosen randomly from the set of alkjids values for that element.
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For example, if the property vector is of the form (H,S,V)mregenting hue, saturation, and

intensity value, the first element H woud be selected rangdraim all possible hues.

2. Hard Assignment of Pixels to Clusters:Now that each of thé( clustersC), has a meapy,
each pixelz; is assigned to the cluster with the closest mean, using andistfunction that
can compute the distance between 2 property vectors. Aptiiig each pixek; is associated

with a single clustet’y.

3. Parameter Recomputation: The means of the clusters are now recomputed based on the
property vector values of all the pixels in each cluster. Sitwe have that, is computed as

the mean of V' (x;) | x; € Ci}.

Steps 2 and 3 above are repeated until convergence, whicinsoeten no pixel moves from one
cluster to another in a given iteration. Figure 1 illustsadek-means segmentation of a color image
into 4 clusters. Note that the roof of the building and thdase on which people are walking are

approximately the same color in the image, so they are baigreed to the same cluster.

1. Select animage: |imgs/P1010012j0g v| 2. Selectaprocessor | KIICluster v| 3.Cick [process>> |

Options:

Init Hethod 0

6407480 (590,88): RGB(158.206.229) Process done !

Figure 1: K-means segmentation of a building scene into gtefs.



3 Expectation-Maximization Clustering

The Expectation-Maximization (EM) algorithm [9] is reldt¢o K-means in that it also expects
the user to select the number of clusters, and it has the sateps. initialization, assignment of
pixels to clusters, and parameter recomputation. The Elgrilign is more general than K-means
in several ways. First, it is not just a clustering algoritHmt a general algorithm for a technique
that finds maximum likelihood estimates in parametric medi@l incomplete data, which has many
uses including both clustering and classification. Sectiraclusters are represented by probability
distributions, not just means. Gaussian distributionsnanst commonly used. Clusters are then
represented by the mearand the covariance matriX. Each cluster also has a weight and once
the clusters (called components in general EM terminoldgge been computed, each property
vector can be expressed as a weightaégture, or linear combination, of Gaussian components.
Third, the assignment of pixels to clusters is a soft, or phalistic, assignment instead of the hard
assignment of each pixel to exactly one cluster in K-meaashpixel will have a final probability
of belonging to each of the final clusters. While it is commomssign it to the cluster which gets
its highest probability, it is also possible to keep therentiector of probabilities and use that in

further analysis. The algorithm can be expressed as follows

1. Parameter Initialization: The parameters for each clustég, which are meamn,, the co-
variance matrix_; and the weightv, = P(CY%), are initialized. The means can be initialized
as random property vector values, as in K-means. The silmpbgsto initialize the covari-
ance matrices is to set each of them taax n identity matrix for property vectors of length

n. The weights are each initialized tg K so that all clusters are initially weighted equally.

2. Soft Assignment of Pixels to Clusters (Expectation):This step estimates the probability
P(Cy | z;) for each pixelr; and each clustef’;. This conditional probability is computed

according to the standard equation:

P(Cy | 2;) = P(x; | C)P(Cy)/P(x;) 1)
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whereP(x;) is given by

P(xz;) = P(x; | Cr)P(Cy) 2
k

P(CY) is just the current weight,. If Cj is represented by a Gaussian distribution and

V(x;) is the property vector of pixet;, P(x; | Cy) is given by

1

V2| X

P(i|Cy) = e~ 3 V(@) =)™ 71 (V@) — ) 3)
. Parameter Recomputation (Maximization): The parametergy, >, andw;, of each cluster
C, are now recomputed based on the property vector valifes) of all pixels z; and the

computed probabilitie® (C}, | x;) from step 2. The formulas for updating the parameters are

as follows:

_ i PGk | i) - V(i)
> P(Cy | ;)

Ug

(4)

S P(Cr | i) - (V) — ) - (V () — )™

O =

()

> P(Cy | i)
W = P(Ck) = W (6)

EM clustering with K=4 was applied to the building image. Thsult is shown in Figure 2.

The EM algorithm was introduced to the computer vision comityuin a paper describing the

Blobworld system [4], which uses color and texture featunethe property vector for each pixel

and the EM algorithm for segmentation as described abovsidBe using the EM algorithm, the

Blobworld paper also described a new set of texture featy@arity, anisotropy, and contrast [4].

Polarity is a meaure of the extent to which the gradient vedioa neighborhood all point in the

same direction, anisotropy is a function of the ratio of tigeevalues of the second moment matrix,

and contrast is a measure of homogeneity of the pixel valllestexture was computed at multiple
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Figure 2: EM segmentation of the building scene using c@atures and K=4.

scales (neighborhood sizes) for each pixel, and the scaiiah polarity changes became small
(less than 2%) was selected as the best scale for that pixelal§orithm was run with small values
of K to produce a small number of regions called blobs thatctba used in image retrieval. Figure
3 shows the result of clustering the building scene imagegusdftware from the Blobworld system.

In order to use the Blobworld software, the building imageweduced to size 192 128.

Figure 3: Blobworld EM segmentation of the building scenag€olor and texture features.



4 Mean-Shift Clustering

Both K-means and EM segmentation require the user to pravieelesired number of clusters.
While this is reasonable for very constrained problemss ibften the case that the number of
clusters depends very much on the given image, not on a pnedefalue. Clustering algorithms
that can determine the number of clusters in the processsfering are therefore more useful for
segmentation of arbitrary images. The mean-shift clusgeaigorithm was specifically designed to

choose the number of clusters in a theoretically sounddashi

The idea of mean-shift clustering is very simple and based bistogram of the image. We will
explain the algorithm for a 1D graytone histogram and theaudis its use on multi-band images.
As before, letX = {z1,...,zx} be a set ofV image pixels, and assume that the property vectors
V(z;) have only one dimension: graytone. L&t .X) be the image histogran# (X) is an array of
bins Hy, H1, ..., Hxg, where 0 is the mininum graytone value and NG is the maximuamtgne
value. A window of the histogram is a contiguous set of binsahe fixed lengthus centered

about a particular bin;. In general, the lengthvs of W will be an odd number.

The idea of mean-shift is to start with windows centered oanalom bin and shift the center of the
bin according to the data within it until the window conves@d a mode of the histogram. This mode
defines a cluster, and the process is repeated until all benassociated with one of the computed

modes. The shifting procedure is given by the following stepd guaranteed to converge.

1. Initialize with a random seed that selects a bin and séieavindowlV centered on that bin.

2. Calculate the center of gravity or weighted mean of the histogram values in windoW’.

wm =Y b; f(bi)

b,eW

wheref(b;) is the count in birb; normalized by dividing by the sum of counts in all the bins

of window W



3. Translate the search windd¥ to the weighted meawm

4. Repeat step 2 until convergence.

The shift procedure is illustrated in Figure 4 for 1D progesctors, such as gray tone. In the figure
a window of length 9 of the histogram is shown with bins 1 tlylo®, centered on bin 5. The first 5
bins have count 0, while the other 4 have nonzero valuesrigtad 19. The new mean is calculated

as
1(6) + 1(7) + 7(8) + 10(9)
19

=38

Thus the mean would be shifted from bin 5 to bin 8, and the ghaeecontinued till convergence.

shift - - - |-

[ 1]

123456789

!

initial window
center

Figure 4: Example of mean shift for 1D histogram.

To use the mean-shift procedure for graytone image segtimantthe shift procedure is run for each
gray tone value and its convergence point is stored. Whéer#tically, the distinct convergence
points should all be clusters, in practice, convergencatpdhat are within a small distaneeof

one another are grouped to form the cluster centers, andpeagdtis then assigned to the group of

its convergence point. Small regions can be eliminatedhesdre in most clustering procedures.

The general mean-shift procedure [5] [6] works with multirdnsional property vectors and has
three parameters. For the spatial domain, ie. the 2D imaigéspthe parameter, specifies the size
of the spatial neighborhood in which shifting is performé&adr the range domain, ie. the property

vectors, the parametet. normalizes the range of the data. A third parameter, minimegion size,
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filters out small regions. The algorithm then generalizass®a multi-dimensional spatial regiéh
of normalized property vectors instead of a one-dimensisradow of gray tones. General mean-
shift filtering, as defined in [5], is given by the followingqmedure in whicx;};—1 ., is the set

of pixels and{z; } ;—1.. , is the resulting convergence point of each pixel.

Foreachy =1,...,n

1. Initialize k = 1 and lety;, = x;.
2. Computeyy 1 = nik > xses(ys)r & < k + 1 till convergence

3. Assignz; = (Xj‘aygmw)'

where the last assignment specifies that the filtered date apatial location aof; will be assigned
to the range components of the point of convergencg,. The windowsS(yy) is centered oryy
and hasy;, points. Figure 5 shows two examples of mean-shift segmentabf the building image
with different parameters. The segmentation on the leftehapatial neighborhood parameter of
50 and data range parameter of 5, while the segmentationeongttit has a spatial neighborhood
parameter of 5 and data range parameter of 2.5. Thus themafid is a very rough segmenta-
tion, while the right image has much more detail. In both sasegions less than 20 pixels were

eliminated.

5 Watershed Segmentation

A watershed in geography is a ridge that divides areas didigedifferent river systems [14]. It
has catchment basins that are geographical areas thatih@ia river or other body of water. If
a graytone image is viewed as a topological surface in wiiehgtaytone at each pixel represents
the height of the surface, then the resulting basins canalafsegmentation of the image. Figure 6

shows a 1D signal with two basins (Basin 1 and Basin 2) and #iershed that separates them.
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Figure 5: Two mean-shift clustering results with differgairameters. Lefto, = 50, o, = 5.0
Righto, = 5, o, = 2.5. Both: minimum region size = 20.

Watershed

Basin 2

Basin 1

Figure 6: Example of watershed basins for a 1D signal.

However, the original graytone image will have too manyatiht heights to produce a practical
segmentation. Instead, the watershed concept can be ustedravisformations of the graytone
image. In particular, the gradient magnitude is commonbdusstead of the original image, and
preprocessing is invoked to smooth the gradient image dardo further control the size and num-
ber of regions. Furthermore, one popular variant (desdrifetow) uses foreground and background

markers to aid the segmentation.

The procedure for marker-controlled watershed segmentatsing gradients comes from [24] and
was intended for images of multiple dark blobs. It uses djmara of mathematical morphology to
place foreground markers in the blobs and background nsfkethe areas without blobs. It can

be applied to more general scenes with changes in the paeyleat it may then require some user
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interaction to obtain desired results. The main steps optbeedure are as follows.

1. Convert the color image to graytone.

2. Compute the gradient magnitude image from the graytoagém
3. Mark the foreground objects (either interactively orcaaiatically)
4. Mark the background (either interactively or automaliyga

5. Modify the gradient magnitude image so that its regionalimma occur at foreground and

background marker pixels.

6. Apply the watershed transform to the modified gradientima

The automatic marking of the foreground objects is done \dghematical morphology. The first
step, called opening-by-reconstruction, is done by a gedgserosion of the original grayscale
image followed by a grayscale reconstruction. Grayscaisi@n replaces the value of each pixel
by the minimum value in its neighborhood as defined by the sh&phe structuring element.
Grayscale reconstruction uses grayscale dilation, whdplaces each pixel by the maximum value
in its neighborhood iteratively until there are no more desto the image. The second step, called
closing-by-reconstruction, is done by a grayscale ditatd the result of the first step followed
by a a grayscale complement operation. The third step isdh®uatation of regional maxima of
the result of the second step plus some noise removal, wiebtisythe foreground markers. The
automatic marking of the background first thresholds thgiai grayscale image and then thins the
background by computing a skeleton. The gradient magnitadge is then modified as explained

in step 5 above.

We ran three different versions of watershed segmentatiorihe first version, we did not place
any markers and obtained what is called an oversegmentatiorsmall regions. In the second
version, we used the automatic marking algorithm with $tmiicg element of size 20 and obtained

a rough segmentation that did not separate the building fheplaza below it. In the third version,
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we manually added a marker on the building and obtained éreagmentation with the building

separated from the plaza. Figure 7 shows the three diffeesnits.

Figure 7: Three watershed clustering results. Left: whegssegmentation without markers; Mid-
dle: watershed segmentation with automatic markers; Rigfgttershed segmentation with auto-
matic markers plus a manual marker added for the building.

6 Normalized Graph Cuts

Spectral clustering is a kind of clustering that uses eigetors of the data in the clustering pro-
cedure. Normalized graph cuts is a kind of spectral clusfedeveloped particularly for image

segmentation [29]. In this approach, the pixels of the imige the nodes of a graph whose
weighted edges represent similarity (in gray tone, cologtber attributes) between pixels, and the

algorithmcuts the graph into two subgraphs.

Let G = (V, E) be a graph whose nodes are points in measurement space ase edges each
have a weighto(i, j) representing the similarity between nodeendj. The goal in segmentation
is to find a partition of the vertices into disjoint séfg V5, ..., V,, so that the similarity within the
sets is high and across different sets is low. The graph caratitioned into two disjoint graphs
with node setsd and B by removing any edges that connect nodesliwith nodes inB. The
degree of dissimilarity between the two sdtgand B can be computed as the sum of the weights of

the edges that have been removed,; this total weight is cattet
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cut(A, B) = Z w(u,v) (7)
u€EAVEDB
One way of formulating the segmentation problem is to loakttie minimum cut in the graph, and
to do so recursively until the regions are uniform enoughe Winimum cut criterion, however,
favors cutting small sets of isolated nodes, which is nofulise finding large uniform color/texture
regions. Thenormalized cut (Ncut) is defined in terms afut(A, B) and theassociation betweenA

and the full vertex set” defined by:

asso(A, V) = Z w(u,t) (8)

ucAteV

The definition of normalized cut is then

cut(A, B) cut(A, B)

N A, B) =
cut(4, B) asso(A,V) = asso(B,V)

(9)

With this definition, the cut that partitions out small ideld point sets will not have smalN cut
values, and the partitions that do produce smé&dkit values are more likely to be useful in image

segmentation. The procedure for finding the minimum nomedlicut is as follows:

1. LetG = (V, E) be the weighted graph, and I8t be the size of its nodesét. Define the

vectord with d(i) given by

d(i) = wl(i, j) (10)

J
so thatd(i) represents the total connection from nade all other nodes. Leb be anN x N

diagnonal matrix withd on its diagonal. Let¥ be anN x N symmetrical matrix with

W (i, j) = w(i, j).
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2. Letx be a vector whose components are defined by

1 ifnodeiisin A
r; = (11)
—1 otherwise

and lety be the continuous approximationtalefined by

Zx->0 dl
y=01+z)— =—"—(1—2x). (12)
(1+x) S di( )
Solve the system of equations
(D—W)y = ADy (13)

for the eigenvectorg and eigenvaluea.

3. Use the eigenvector with the second smallest eigenvalbartition the graph to find the

splitting point such thaiV cut is minimized?

4. Decide if the current partition should be subdividedhartby checking the stability of the

cut and making sure tha¥ cut is below a pre-specified threshold value.

5. Recursively repartition the segmented parts if necgssar
The edge weights)(i, j) were defined in [29] by

—|F(i)—F(5))3 ZIX@O-XG)IF
s 2 e 03( if HX(Z) — X(])||2 <r

w(i,j)=e I * (14)

0 otherwise

where X (i) is the spatial location of nodg F(i) is the feature value based on intensity, color,

or other information, and? ando? are the variances of the image features and spatial losation

1The second smallest eigenvector of the generalized eigmmy(13) is the real-valued solution to the normalized cut
problem.
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respectively. Note that the weight(:, j) is set to 0 for any pair of nodesand; that are more than

a prespecified numberof pixels apart.

Figure 8 illustrates the operation of the normalized graphalgorithm on the building image.

Figure 8: Three results from normalized graph cuts. Lefst iut; Middle: second cut; Right: third
cut.

7 Interactive Image Segmentation

Interactive image segmentation algorithms provide fléityband precision to object segmentation
by incorporating user inputs. The ease of use and speed aliefrortant aspects. Two approaches
will be introduced in this section: (1) an effective imaggmeentation approach with a novel auto-

matic boundary refinement procedure, and (2) fast image &egtion by discriminative clustering.

7.1 Interactive Image Segmentation with Automatic Bounday Refinement

Interactive image segmentation algorithms produce behjgrct boundaries with more user inputs.
To reduce the amount of user inputs, an effective automatioidhary refinement algorithm is pro-

posed [22]. The over-segmentation is first performed to segte image into many small regions.
Then for the non-boundary part of the object, the over-sed@teregions are merged using the

mean color of each region in CIELab space as the feature hEaegions near the initial boundary,
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Source | Input strokes || Extract sampling of background
image | | for sampling. | |and foreground using the strokes.
v
Find suspicious | [Merge the regions Over-segment
boundaries and [ into background [¢jthe image to divide
boundary regions. and foreground. it into regions.

v
Re-classify pixels in the Obtain the final image with
boundary regions into  [—»| the foreground separated
background and foreground. from the background.

Figure 9: Work flow of the method in [22].

low-contrast object boundaries are detected by adaptikie®gholding the boundary regions. These
low-contrast object boundaries are treated as possiliyneous boundary regions and relabeled by

incorporating local information from pixels and globaldnfnation from those regions.

Figure 9 shows the work flow of our approach. The strokes aseifiput to extract a sampling
of foreground and background of the source image. After-eegmenting the source image to
generate many regions, the resulting regions are mergedoatkground and foreground using
the maximal-similarity-based region merging (MSRM) ruds], producing the initial image seg-
mentation. Next, suspicious low-contrast object bouredaaire detected. Pixels in those boundary
regions are re-classified to determine to which class thademy region belongs, and the region
is re-labeled if necessary. After all suspicious boundagians are processed, the final segmented

image is obtained. Details of the approach are as folloviy aidetailed example shown in Figure 10.

7.1.1 Merge over-segmented regions

As in the approaches of [25] and [19], the image is first oegmsented. Since the mean-shift
algorithm [7] preserves the boundaries well, it is used lier initial over-segmentation. After the
user marks the foreground and background regions with straites, the background regions are
merged using the MSRM rule [25]. However, instead of usinmgotationally expensive color
histograms, the mean color of each region is used. Then ified iabeling of each region, either
foreground (marked as 1) or background (marked as 0), isrgttk The size of the smallest over-

segmented regions can be adjust by a parametehich is set as 10 in the experiments to generate
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results in Figure 10 and Figure 11.
7.1.2 Detect possibly erroneous low-contrast object bourdy regions

To find candidate regions for more careful analysis, onlyatemregions at the boundary between
the foreground and the background need to be consideredseTiegions have similar colors but
different labels as described in the section 7.1.1. The taynregionsU,, are defined as the
regions that have at least one neighboring region with adifft initial labeling. For example, if a
foreground regiom; has a neighboB; that is marked as background, thépand B; are boundary

regions. Such regions are required to share a boundarysthatdast 4 pixels long.

For each boundary region, the mean cqlgy is calculated, and the neighbor of opposite label with
the most similar mean color is found. All the boundary regibly,; are sorted according to their
minimal color differencesl;’7. Then the regions withl}”) < dr,...;, are selected as the possibly
erroneous low-contrast object boundary regions to be ikfiibe thresholdizy,,.., is simply the
median color difference over all boundary region pairs diheth one region is foreground and the

other one is background.
7.1.3 Refine possibly erroneous boundary regions

After all possibly erroneous low-contrast object boundagions are detected, they are analyzed
and reclassified. The assumption is that the initial segatient using the mean-shift algorithm
includes the correct region boundary. Using the local anthajlinformation of the pixels inside
each region, each pixel is classified to be foreground ordraciad. Then the number of foreground
and background pixels are counted inside each region. Ifegien has more foreground pixels, it

is classified as a foreground region, otherwise as backdroun

This problem can be formulated as a binary labeling probléail the pixels belonging to the sus-
picious low-contrast object boundary regions, with diferenergy terms than previous work [19].

The algorithm not only considers the pixels’ similaritiegheir neighbors, but also their similarities
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to the regions marked by the user in terms of color means amdiatd deviations.

Suppose all the pixels in the suspicious low-contrast alfjeandary regions form a graph =
(v,€), wherev is the set of all pixels andis the set of all arcs connecting the four adjacent pixels.
The algorithm assigns a unique labgfor each pixel € v, wherex; = 1 if i belongs to foreground

andx; = 0if ¢ belongs to background. The energy function to minimize is

E(X)=)Y Ei(z)+X Y Bz x;), (15)
1€V (4,9)€e
where E is likelihood energy,F5 is prior energy, and\ = 1 in our experiments.F; encodes
the color similarity of a pixel to the marked foreground orckground, taking into account the
color standard deviation (std) within the regions, whicln & regarded as the simplest texture

information. They are also used to weight the color diffeeeand std difference.

For each pixef, suppose’ (i) is its color, X" is the mean color of marked foreground region§,
is the mean color of marked background regions, @figl is the std of the region which it belongs
to. of" is the foreground region std, and is the background region std. The following distances

are computed:

dmi = ming || C(i) — py ||
dmP = min, || C>i) — uB
: KON )
dof" = min, || o@i) — ol |
doP = ming, || o(i) —of |
Then,E; (z;) is defined as follows:
SF
B
Ey(z; =0) = F B (18)
wherezX = U(i)lgff dmiX + o(i)o:Xdo}X for X € {F, B}.
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Figure 10: Comparisons between the method in [25] and theagexd algorithm. (a) The source
images with user input strokes; blue strokes are used to tharbackground regions, and red
strokes are used to mark the foreground regions. (b) Resbitsned by the method in [25]. (c)
Enlarged boundary region of the results obtained by methdd5]. (d) Results obtained by the
proposed algorithm. (e) Enlarged corrected boundary nelgyathe proposed algorithm.

Because the marked boundary regions have been eliminaied Section 7.1.2, the Likelihood
energy is different from that of equation (2) in [19]. The sfdregions is also included, and the
intuition is that if the region has high color std,, is more important in the comparison, otherwise

d,, 1S more important.

As in the methodology of [19]F- is the energy due to the gradient along the object boundary. |

also acts like a smoothing term, enforcing that similar hieaing pixels have the same label.

|z; — 24

(IC () = C(II* +1) x scale (19)

Eo(wi, ;) =

The difference is that the energy between pixels belongingdjfferent regions is scaled down, so
that the cut through the region boundary is facilitated.himéxperimentscale = 1 if pixel ¢ andj

belong to the same regiosgale = 2 otherwise.

There are many methods to minimize the energy function. The-fhow library [2] is one of
the most efficient. Note that the assumption that the initier-segmentation includes all correct

boundary segments is crucial for good results.

Figure 11 shows the results of applying this methodologyhohuilding image.
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Figure 11: (a) The image with user input strokes; blue ssake used to mark the background re-
gions, and red strokes are used to mark the foreground iegibnResult obtained by the proposed
algorithm.

7.2 Fast Interactive Image Segmentation by DiscriminativeClustering

Unlike all the methods using complex global optimizationeokergy functions[1, 16, 8], the in-
teractive image segmentation algorithm proposed in [2@j]risewith an initial over-segmentation
using the mean shift algorithm and follows this by discriative clustering and local neighborhood
classification. It is straightforward to implement, muckté& than graph cuts, and can be further

speeded up by an image pyramid and boundary refinement precg].

The algorithm in [21] contains the following steps and igslrated in Figure 12.

7.2.1 Pre-segmentation by the mean-shift algorithm

After the user input strokes to specify the foreground aeddtickground, the selected image is first
over-segmented using the mean-shift algorithm [7]. Thezdlaee reasons for choosing the mean-
shift algorithm for the initial over-segmentation. Firgtjs observed to preserve the boundaries
better than other methods [10, 27]. Second, its speed hasitmeoved significantly in recent
years [12, 26]. Third, there are fewer parameters to tung oan algorithm is not sensitive to the

change of parameters as long as they are within a reasoreige.r
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(e)

Figure 12: Steps of the proposed algorithm: (a) Originalgenavith user input. (b) Over-
segmentation by the mean-shift algorithm. (c) Result aftecriminative clustering, with red in-
dicating foreground, blue indicating background, andioggcolor indicating ambiguous regions.
(d) Result after merging ambiguous regions from (c). (e)uRex local neighborhood pruning. (f)
Final result on color image with bounding box shown.

7.2.2 Merge regions by discriminative clustering

Region merging is the critical step that makes our algorigmorder of magnitude faster than other
methods after the pre-segmentation. After the user ingivén, the algorithm calculates the mean
color of marked foreground and background regions. Supthese areV; foreground regiond/,
marked by the user, anl, marked background regiond;,. For each regiom; € My andB; €

My, their mean colorg4, andup; in CIELab color-space are computed. The minimal difference
between the mean colors of the marked foreground and baskdnegions is also computed to be
taken as the threshold;,,.;, for later clustering usage. That i&y,,csn = min(ua, — ;). If
dinresn 1tS€lf is smaller than a threshold then it is doubled. The intuition is that if some marked

foreground and background segments have very similar ,olnore ambiguous regions need be
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further processed (Section 7.2.3). In the implementatiooutput Figure 12} is set to2.

Two three-dimensional kd-trees are constructed, one foin §gpe of marked region. In the fore-
ground kd-tree, each node stores the mean color of one mfotegtound region, and in the back-
ground kd-tree, each node stores the mean color of one mbhda&dyround region. For each un-
marked regionR,, the algorithm takes its mean color as a query point in the (e and does

a nearest neighbor search in those two kd-trees. This guieklirns the marked regions,,, and

B,,,, that have the most similar mean color to it, and the coloedsficesi, ; andd,,;.

Letdif, = duf —dup. 1f dify > dinresn, Ry is marked as background.dif; < —dinresn, Ru
is marked as foreground. The output of this step on the bietyaris shown in Figure 12 (c), where
the foreground regions are marked red, background regrerislae, and the ambiguous regions are

just marked with their original colors. Some regions withkdgreen remain ambiguous.

7.2.3 Local neighborhood region classification and pruning

After initial cluster merging, there may still be unmarkestjions that are not classified as either
foreground or background. Whereas in the first step the ukedaregions are classified only by
their mean colors without considering the spatial infoliorgtthe local neighborhood information

is utilized to better prune the segmentation result. Thexevao steps:

1. If there areN,, remaining unmarked regions from the first processing stagh ef them is

assigned the label of the most similar of its neighboringamgyin terms of their mean color.

If the most similar neighboring region is also an unmarkegia®, they are merged together

to become a new unmarked region and the process repeats.

If there is a tie again in terms of the most similarly labelaiighboring region, the label of

the region that has the most similar color variance is used.

For the bird image, this step generates the image shownimd-i (d), with white indicating

foreground and black indicating background.
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2. After all the regions have been marked as either foregtautvackground, a connected com-
ponents algorithm [28] is applied to find isolated foregrbum background regions that are
surrounded by regions of the opposite labeling. The lakfdksotated regions are changed to

the opposite label only when the following conditions artis§iad:

(a) The region was not marked by the user.
(b) The region is not the biggest region with that label.

(c) The region is smaller than its surrounding regions.

For the bird image, this step generates the image Figure)12lteés mask is used to cut out the

object as shown in Figure 12 (f).

With different user inputs, this algorithm can help the usegment out different objects in the

building image. Figure 13 shows two different sets of uspuia and the corresponding results.

Figure 13: (a) Original image with user input. (b) Segmeatatesults.
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The first user marked the building, trees, and some of theshegle area as foreground and only
the sky as background. The resulting segmentation retdiveduilding, the trees, and all of the
pedestrian area. The second user marked the building agrdored, but she marked the trees,
pedestrian area, and sky as background. In this case thibriguivas segmented from the image.

Not only the trees on the left of the building, but a tree imfrof the building was removed.

8 Conclusions

In this paper, we have described the most common segmantdtorithms currently used by the
computer vision community for possible use in remote s@nsiime K-means algorithm is the sim-
plest and most commonly used algorithm, and the EM clugjezigorithm is a probabilistic version
of K-means. They both require the user to preselect the nuoflmdusters K. The mean-shift algo-
rithm has become popular because it does not require theenwhblusters to be selected, but it has
its own parameters that also control the number of and sizbe oegions. Watershed segmentation
is based on the idea of catchment basins in geography. Theeskatl segmentation algorithm has
mainly been used for fairly simple foreground-backgrouedmsentation, such as images of dark
blobs (ie. cell nuclei) on a light background. It does notsesseful for remote sensing applica-
tions. Normalized graph cuts is a very powerful algorithrattts now used heavily in computer
vision applications. It finds the best place to cut the grdghrepresents image pixels (or small
regions) connected by edges representing their similantyiterates until a threshold is reached on
the normalized cut value. It has been tried on multiple d#ifé forms of data (gray tone images,
color images, videos) and should be consided for remotérggagplications. Finally, interactive
segmentation can be used when automatic methods are noatecenough for the desired applica-
tion. We discuss interactive segmentation methods fromoaur recent research and show results
both on general images and on the building image used to ssits of all the methods throughout

this paper.
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