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1 Introduction

The remote sensing and computer vision communities share a common goal of extracting useful

information from raw imagery. Both communities have exploited several trends that support the

increasingly timely, cost effective, accurate, and effective automated extraction of information from

raw imagery that include increasingly powerful, affordable, and available computer hardware; in-

creasingly sophisticated software tools, both commercialand open source, that have a proven track

record; a growing community of computer knowledgeable users; and an increasing proliferation of

sophisticated sensors, both active and passive, ranging from handheld digital cameras to commercial

satellites with drastically improved spatial, radiometric, and temporal resolution.

While the computer vision (CV) community has many of the samegoals as the remote sensing (RS)

cummunity, its applications are not focused in characterising the earth’s surface but include a much

wider range of applications. Computer vision applicationsinclude industrial, biomedical, scientific,

environment exploration, surveillance, document understanding, video analysis, graphics, games

and entertainment. Computer vision systems have been designed that can control robots or au-

tonomous vehicles, inspect machine parts, detect and recognize human faces, retrieve images from

large databases according to content, reconstruct large objects or portions of cities from multiple

photographs, track suspicious people or objects in videos,and more.

Remote sensing systems work on multi-spectral images that captures image data at specific frequen-

cies across the electromagnetic spectrum. These images contain multiple bands, some from light

frequencies visible to humans and some from frequencies beyond the visible light range, such as in-

frared. Computer vision systems have been developed for alltypes of images, but mainly work with

single-band graytone images, three-band color images, andsingle-band depth images, sometimes

registered to color images of the same scene. In spite of thisdifference, many of the same tools can

be used in both computer vision and remote sensing.

Table 1 shows a simplified classification of computer vision tools, which are available in both open-

source, such as Intel’s OpenCV library in C++ [15] and NIH’s ImageJ library in Java [3], and
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Basic Tools Example Applications
filters noise suppression

edge detection
texture description

segmentation object recognition
image retrieval
medical image analysis

interest operators image matching
motion analysis
object recognition
image retrieval

photogrammetric operations3D reconstruction

Table 1: A Simple Classification of Computer Vision Tools

commercial packages such as Matlab with its Image Processing and Signal Processing toolkits [14].

Filter tools, which should be familiar to most RS workers, are used to enhance images or extract

low-level features. Sharpening, brightening, noise removal, edge detection, and texture feature

extraction are common filters. Interest operators, which have become popular in CV over the last

decade, are operators that detect interesting points or small regions in images for purposes of image

matching or object recognition. The best-known such operator is the SIFT operator [13], which

detects interest points and describes them in a 128- dimensional vector that is invariant to translation,

rotation, scale, and somewhat invariant to illumination. The points detected by SIFT stand out as

interesting, because they are local minima and maxima of a difference of Gaussians operator applied

at multiple scales. The SIFT operator can be used to find a starter set of matching points across pairs

or sequences of images. SIFT can be used along with the RANSACalgorithm [11] for determining

the best homography that maps the points in one image to matching points in another. This would

be helpful to RS workers who need point correspondences to calculate 3D depth images from pairs

of 2D images for registration of satellite imagery.

Segmentation operators partition an image into nonoverlapping regions, each of which is homoge-

neous in one or more features and maximal in terms of this homogeneity. Segmentation is important

in both CV and RS, where it can be used to find areas that can be classified according to land use.

Although segmentation algorithms include such old standards as split-and-merge [18] and region
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growing [17], algorithms based on different forms of clustering have won out in recent years. Clus-

tering algorithms can operate on gray-tone images, color images, or multi-spectral images, making

them easily adaptible to the RS domain. In this paper, we willdescribe the most popular and useful

clustering algorithms including K-Means clustering, Expectation-Maximization (EM) clustering,

watershed segmentations, graph cuts, and mean-shift clustering. We will also discuss interactive

clustering algorithms that allow some user input in order tosegment out objects of interest that are

not homogeneous in any feature but are important to the user.

Clustering algorithms can cluster any objects that can be represented by property vectors. In this

paper, we will assume that the objects are pixels from an image and the property vectors contain

numeric attributes of those pixels. In the simplest case, a gray tone image, each property vector

contains only a single gray tone. For color images, propertyvectors usually represent the particular

color space in use, such as RGB or HSV. For multispectral images, the property vector of a pixel

would contain the value for that pixel in each of its bands. Inaddition to this “color” information,

other attributes describing the location or texture of a pixel may also be added.

2 K-means Clustering

K-means clustering [23] is the simplest and most-used clustering algorithm. Given an image ofN

pixels, the goal is to partition the image intoK clusters, where the value ofK must be provided by

the user. Clusters provide a grouping of the pixels that is dependent on their values in the image,

but not necessarily on their locations in the image unless location is a specified property.

Let X = {x1, . . . , xN} be a set ofN image pixels, and letV (xi) denote the property vector

associated with pixelxi. The K-means algorithm has the following steps:

1. Parameter Initialization: The means of each of theK clusters are initialized to values of

potential property vectors. In the classic K-means algorithm, the value of each element of

the property vector is chosen randomly from the set of all possible values for that element.
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For example, if the property vector is of the form (H,S,V) representing hue, saturation, and

intensity value, the first element H woud be selected randomly from all possible hues.

2. Hard Assignment of Pixels to Clusters:Now that each of theK clustersCk has a meanµk,

each pixelxi is assigned to the cluster with the closest mean, using a distance function that

can compute the distance between 2 property vectors. At thispoint each pixelxi is associated

with a single clusterCk.

3. Parameter Recomputation: The means of the clusters are now recomputed based on the

property vector values of all the pixels in each cluster. Thus we have thatµk is computed as

the mean of{V (xi) | xi ∈ Ck}.

Steps 2 and 3 above are repeated until convergence, which occurs when no pixel moves from one

cluster to another in a given iteration. Figure 1 illustrates a K-means segmentation of a color image

into 4 clusters. Note that the roof of the building and the surface on which people are walking are

approximately the same color in the image, so they are both assigned to the same cluster.

Figure 1: K-means segmentation of a building scene into 4 clusters.
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3 Expectation-Maximization Clustering

The Expectation-Maximization (EM) algorithm [9] is related to K-means in that it also expects

the user to select the number of clusters, and it has the same 3steps: initialization, assignment of

pixels to clusters, and parameter recomputation. The EM algorithm is more general than K-means

in several ways. First, it is not just a clustering algorithm, but a general algorithm for a technique

that finds maximum likelihood estimates in parametric models for incomplete data, which has many

uses including both clustering and classification. Second,the clusters are represented by probability

distributions, not just means. Gaussian distributions aremost commonly used. Clusters are then

represented by the meanµ and the covariance matrixΣ. Each cluster also has a weightw, and once

the clusters (called components in general EM terminology)have been computed, each property

vector can be expressed as a weightedmixture, or linear combination, of Gaussian components.

Third, the assignment of pixels to clusters is a soft, or probabilistic, assignment instead of the hard

assignment of each pixel to exactly one cluster in K-means. Each pixel will have a final probability

of belonging to each of the final clusters. While it is common to assign it to the cluster which gets

its highest probability, it is also possible to keep the entire vector of probabilities and use that in

further analysis. The algorithm can be expressed as follows:

1. Parameter Initialization: The parameters for each clusterCk, which are meanµk, the co-

variance matrixΣk and the weightwk = P (Ck), are initialized. The means can be initialized

as random property vector values, as in K-means. The simplest way to initialize the covari-

ance matrices is to set each of them to ann× n identity matrix for property vectors of length

n. The weights are each initialized to1/K so that all clusters are initially weighted equally.

2. Soft Assignment of Pixels to Clusters (Expectation):This step estimates the probability

P (Ck | xi) for each pixelxi and each clusterCk. This conditional probability is computed

according to the standard equation:

P (Ck | xi) = P (xi | Ck)P (Ck)/P (xi) (1)
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whereP (xi) is given by

P (xi) =
∑

k

P (xi | Ck)P (Ck) (2)

P (Ck) is just the current weightwk. If Ck is represented by a Gaussian distribution and

V (xi) is the property vector of pixelxi, P (xi | Ck) is given by

P (xi|Ck) =
1

√

2π | Σ |
e−

1
2

(V (xi)−µk)T Σ−1 (V (xi)−µk) (3)

3. Parameter Recomputation (Maximization): The parametersµk, Σk, andwk of each cluster

Ck are now recomputed based on the property vector valuesV (xi) of all pixels xi and the

computed probabilitiesP (Ck | xi) from step 2. The formulas for updating the parameters are

as follows:

uk =

∑

i P (Ck | xi) · V (xi)
∑

i P (Ck | xi)
(4)

σk =

∑

i P (Ck | xi) · (V (xi)− µk) · (V (xi)− µk)
T

∑

i P (Ck | xi)
(5)

wk = P (Ck) =

∑

i P (Ck | xi)

N
(6)

EM clustering with K=4 was applied to the building image. Theresult is shown in Figure 2.

The EM algorithm was introduced to the computer vision community in a paper describing the

Blobworld system [4], which uses color and texture featuresin the property vector for each pixel

and the EM algorithm for segmentation as described above. Besides using the EM algorithm, the

Blobworld paper also described a new set of texture features: polarity, anisotropy, and contrast [4].

Polarity is a meaure of the extent to which the gradient vectors in a neighborhood all point in the

same direction, anisotropy is a function of the ratio of the eigenvalues of the second moment matrix,

and contrast is a measure of homogeneity of the pixel values.The texture was computed at multiple

7



Figure 2: EM segmentation of the building scene using color features and K=4.

scales (neighborhood sizes) for each pixel, and the scale atwhich polarity changes became small

(less than 2%) was selected as the best scale for that pixel. The algorithm was run with small values

of K to produce a small number of regions called blobs that could be used in image retrieval. Figure

3 shows the result of clustering the building scene image using software from the Blobworld system.

In order to use the Blobworld software, the building image was reduced to size 192× 128.

Figure 3: Blobworld EM segmentation of the building scene using color and texture features.
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4 Mean-Shift Clustering

Both K-means and EM segmentation require the user to providethe desired number of clusters.

While this is reasonable for very constrained problems, it is often the case that the number of

clusters depends very much on the given image, not on a predefined value. Clustering algorithms

that can determine the number of clusters in the process of clustering are therefore more useful for

segmentation of arbitrary images. The mean-shift clustering algorithm was specifically designed to

choose the number of clusters in a theoretically sound fashion.

The idea of mean-shift clustering is very simple and based ona histogram of the image. We will

explain the algorithm for a 1D graytone histogram and then discuss its use on multi-band images.

As before, letX = {x1, . . . , xN} be a set ofN image pixels, and assume that the property vectors

V (xi) have only one dimension: graytone. LetH(X) be the image histogram.H(X) is an array of

binsH0,H1, . . . ,HNG, where 0 is the mininum graytone value and NG is the maximum graytone

value. A window of the histogram is a contiguous set of bins ofsome fixed lengthws centered

about a particular binbi. In general, the lengthws of W will be an odd number.

The idea of mean-shift is to start with windows centered on a random bin and shift the center of the

bin according to the data within it until the window converges at a mode of the histogram. This mode

defines a cluster, and the process is repeated until all bins are associated with one of the computed

modes. The shifting procedure is given by the following steps and guaranteed to converge.

1. Initialize with a random seed that selects a bin and selectthe windowW centered on that bin.

2. Calculate the center of gravity or weighted meanwm of the histogram values in windowW .

wm =
∑

bi∈W

bi f(bi)

wheref(bi) is the count in binbi normalized by dividing by the sum of counts in all the bins

of windowW .
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3. Translate the search windowW to the weighted meanwm

4. Repeat step 2 until convergence.

The shift procedure is illustrated in Figure 4 for 1D property vectors, such as gray tone. In the figure

a window of length 9 of the histogram is shown with bins 1 through 9, centered on bin 5. The first 5

bins have count 0, while the other 4 have nonzero values totaling to 19. The new mean is calculated

as
1(6) + 1(7) + 7(8) + 10(9)

19
= 8

Thus the mean would be shifted from bin 5 to bin 8, and the procedure continued till convergence.

1 2 3 4 5 6 7 8 9

      center
initial window

shift

Figure 4: Example of mean shift for 1D histogram.

To use the mean-shift procedure for graytone image segmentation, the shift procedure is run for each

gray tone value and its convergence point is stored. While theoretically, the distinct convergence

points should all be clusters, in practice, convergence points that are within a small distanceǫ of

one another are grouped to form the cluster centers, and eachpixel is then assigned to the group of

its convergence point. Small regions can be eliminated, as they are in most clustering procedures.

The general mean-shift procedure [5] [6] works with multi-dimensional property vectors and has

three parameters. For the spatial domain, ie. the 2D image points, the parameterσs specifies the size

of the spatial neighborhood in which shifting is performed.For the range domain, ie. the property

vectors, the parameterσr normalizes the range of the data. A third parameter, minimumregion size,
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filters out small regions. The algorithm then generalizes touse a multi-dimensional spatial regionS

of normalized property vectors instead of a one-dimensional window of gray tones. General mean-

shift filtering, as defined in [5], is given by the following procedure in which{xj}j=1...n is the set

of pixels and{zj}j=1...n is the resulting convergence point of each pixel.

For eachj = 1, . . . , n

1. Initializek = 1 and letyk = xj .

2. Computeyk+1 = 1
nk

∑

xi∈S(yk), k ← k + 1 till convergence

3. Assignzj = (xs
j ,y

r
conv).

where the last assignment specifies that the filtered data at the spatial location ofxj will be assigned

to the range components of the point of convergenceyconv. The windowS(yk) is centered onyk

and hasnk points. Figure 5 shows two examples of mean-shift segmentations of the building image

with different parameters. The segmentation on the left hasa spatial neighborhood parameter of

50 and data range parameter of 5, while the segmentation on the right has a spatial neighborhood

parameter of 5 and data range parameter of 2.5. Thus the left image is a very rough segmenta-

tion, while the right image has much more detail. In both cases, regions less than 20 pixels were

eliminated.

5 Watershed Segmentation

A watershed in geography is a ridge that divides areas drained by different river systems [14]. It

has catchment basins that are geographical areas that draininto a river or other body of water. If

a graytone image is viewed as a topological surface in which the graytone at each pixel represents

the height of the surface, then the resulting basins can define a segmentation of the image. Figure 6

shows a 1D signal with two basins (Basin 1 and Basin 2) and the watershed that separates them.
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Figure 5: Two mean-shift clustering results with differentparameters. Left:σs = 50, σr = 5.0
Rightσs = 5, σr = 2.5. Both: minimum region size = 20.

Basin 2

Basin 1

Watershed

Figure 6: Example of watershed basins for a 1D signal.

However, the original graytone image will have too many different heights to produce a practical

segmentation. Instead, the watershed concept can be used with transformations of the graytone

image. In particular, the gradient magnitude is commonly used instead of the original image, and

preprocessing is invoked to smooth the gradient image, in order to further control the size and num-

ber of regions. Furthermore, one popular variant (described below) uses foreground and background

markers to aid the segmentation.

The procedure for marker-controlled watershed segmentation using gradients comes from [24] and

was intended for images of multiple dark blobs. It uses operations of mathematical morphology to

place foreground markers in the blobs and background markers for the areas without blobs. It can

be applied to more general scenes with changes in the parameters, but it may then require some user
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interaction to obtain desired results. The main steps of theprocedure are as follows.

1. Convert the color image to graytone.

2. Compute the gradient magnitude image from the graytone image.

3. Mark the foreground objects (either interactively or automatically)

4. Mark the background (either interactively or automatically)

5. Modify the gradient magnitude image so that its regional minima occur at foreground and

background marker pixels.

6. Apply the watershed transform to the modified gradient image.

The automatic marking of the foreground objects is done via mathematical morphology. The first

step, called opening-by-reconstruction, is done by a grayscale erosion of the original grayscale

image followed by a grayscale reconstruction. Grayscale erosion replaces the value of each pixel

by the minimum value in its neighborhood as defined by the shape of the structuring element.

Grayscale reconstruction uses grayscale dilation, which replaces each pixel by the maximum value

in its neighborhood iteratively until there are no more changes to the image. The second step, called

closing-by-reconstruction, is done by a grayscale dilation of the result of the first step followed

by a a grayscale complement operation. The third step is the computation of regional maxima of

the result of the second step plus some noise removal, which yields the foreground markers. The

automatic marking of the background first thresholds the original grayscale image and then thins the

background by computing a skeleton. The gradient magnitudeimage is then modified as explained

in step 5 above.

We ran three different versions of watershed segmentation.In the first version, we did not place

any markers and obtained what is called an oversegmentationinto small regions. In the second

version, we used the automatic marking algorithm with structuring element of size 20 and obtained

a rough segmentation that did not separate the building fromthe plaza below it. In the third version,
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we manually added a marker on the building and obtained a rough segmentation with the building

separated from the plaza. Figure 7 shows the three differentresults.

Figure 7: Three watershed clustering results. Left: watershed segmentation without markers; Mid-
dle: watershed segmentation with automatic markers; Right: Watershed segmentation with auto-
matic markers plus a manual marker added for the building.

6 Normalized Graph Cuts

Spectral clustering is a kind of clustering that uses eigenvectors of the data in the clustering pro-

cedure. Normalized graph cuts is a kind of spectral clustering developed particularly for image

segmentation [29]. In this approach, the pixels of the imageform the nodes of a graph whose

weighted edges represent similarity (in gray tone, color, or other attributes) between pixels, and the

algorithmcuts the graph into two subgraphs.

Let G = (V,E) be a graph whose nodes are points in measurement space and whose edges each

have a weightw(i, j) representing the similarity between nodesi andj. The goal in segmentation

is to find a partition of the vertices into disjoint setsV1, V2, . . . , Vm so that the similarity within the

sets is high and across different sets is low. The graph can bepartitioned into two disjoint graphs

with node setsA andB by removing any edges that connect nodes inA with nodes inB. The

degree of dissimilarity between the two setsA andB can be computed as the sum of the weights of

the edges that have been removed; this total weight is calleda cut.
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cut(A,B) =
∑

u∈A,v∈B

w(u, v) (7)

One way of formulating the segmentation problem is to look for theminimum cut in the graph, and

to do so recursively until the regions are uniform enough. The minimum cut criterion, however,

favors cutting small sets of isolated nodes, which is not useful in finding large uniform color/texture

regions. Thenormalized cut (Ncut) is defined in terms ofcut(A,B) and theassociation betweenA

and the full vertex setV defined by:

asso(A,V ) =
∑

u∈A,t∈V

w(u, t) (8)

The definition of normalized cut is then

Ncut(A,B) =
cut(A,B)

asso(A,V )
+

cut(A,B)

asso(B,V )
(9)

With this definition, the cut that partitions out small isolated point sets will not have smallNcut

values, and the partitions that do produce smallNcut values are more likely to be useful in image

segmentation. The procedure for finding the minimum normalized cut is as follows:

1. Let G = (V,E) be the weighted graph, and letN be the size of its nodesetV . Define the

vectord with d(i) given by

d(i) =
∑

j

w(i, j) (10)

so thatd(i) represents the total connection from nodei to all other nodes. LetD be anN×N

diagnonal matrix withd on its diagonal. LetW be anN × N symmetrical matrix with

W (i, j) = w(i, j).
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2. Letx be a vector whose components are defined by

xi =











1 if node i is in A

−1 otherwise
(11)

and lety be the continuous approximation tox defined by

y = (1 + x)−

∑

xi>0 di
∑

xi<0 di
(1− x). (12)

Solve the system of equations

(D −W )y = λDy (13)

for the eigenvectorsy and eigenvaluesλ.

3. Use the eigenvector with the second smallest eigenvalue to bipartition the graph to find the

splitting point such thatNcut is minimized.1

4. Decide if the current partition should be subdivided further by checking the stability of the

cut and making sure thatNcut is below a pre-specified threshold value.

5. Recursively repartition the segmented parts if necessary.

The edge weightsw(i, j) were defined in [29] by

w(i, j) = e

−‖F (i)−F (j)‖22
σ2

I ∗















e

−‖X(i)−X(j)‖22
σ2

X if ‖X(i) −X(j)‖2 < r

0 otherwise

(14)

whereX(i) is the spatial location of nodei, F (i) is the feature value based on intensity, color,

or other information, andσ2
I andσ2

X are the variances of the image features and spatial locations,

1The second smallest eigenvector of the generalized eigensystem (13) is the real-valued solution to the normalized cut
problem.
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respectively. Note that the weightw(i, j) is set to 0 for any pair of nodesi andj that are more than

a prespecified numberr of pixels apart.

Figure 8 illustrates the operation of the normalized graph-cut algorithm on the building image.

Figure 8: Three results from normalized graph cuts. Left: first cut; Middle: second cut; Right: third
cut.

7 Interactive Image Segmentation

Interactive image segmentation algorithms provide flexibility and precision to object segmentation

by incorporating user inputs. The ease of use and speed are two important aspects. Two approaches

will be introduced in this section: (1) an effective image segmentation approach with a novel auto-

matic boundary refinement procedure, and (2) fast image segmentation by discriminative clustering.

7.1 Interactive Image Segmentation with Automatic Boundary Refinement

Interactive image segmentation algorithms produce betterobject boundaries with more user inputs.

To reduce the amount of user inputs, an effective automatic boundary refinement algorithm is pro-

posed [22]. The over-segmentation is first performed to segment the image into many small regions.

Then for the non-boundary part of the object, the over-segmented regions are merged using the

mean color of each region in CIELab space as the feature. For the regions near the initial boundary,
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Source

i

Input strokes

f li

Extract sampling of  background

d f d i h kimage for sampling. and foreground using the strokes.

Over-segment

the image to divide

it into regions.

Merge the regions

into background

and foreground.

Find suspicious

boundaries and

boundary regions. ggy g

Re-classify pixels in the 

boundary regions into 

background and foreground.

Obtain the final image with

the foreground separated

from the background.

Figure 9: Work flow of the method in [22].

low-contrast object boundaries are detected by adaptivelythresholding the boundary regions. These

low-contrast object boundaries are treated as possibly erroneous boundary regions and relabeled by

incorporating local information from pixels and global information from those regions.

Figure 9 shows the work flow of our approach. The strokes are first input to extract a sampling

of foreground and background of the source image. After over-segmenting the source image to

generate many regions, the resulting regions are merged into background and foreground using

the maximal-similarity-based region merging (MSRM) rule [25], producing the initial image seg-

mentation. Next, suspicious low-contrast object boundaries are detected. Pixels in those boundary

regions are re-classified to determine to which class the boundary region belongs, and the region

is re-labeled if necessary. After all suspicious boundary regions are processed, the final segmented

image is obtained. Details of the approach are as follow, with a detailed example shown in Figure 10.

7.1.1 Merge over-segmented regions

As in the approaches of [25] and [19], the image is first over-segmented. Since the mean-shift

algorithm [7] preserves the boundaries well, it is used for the initial over-segmentation. After the

user marks the foreground and background regions with shortstrokes, the background regions are

merged using the MSRM rule [25]. However, instead of using computationally expensive color

histograms, the mean color of each region is used. Then the initial labeling of each region, either

foreground (marked as 1) or background (marked as 0), is generated. The size of the smallest over-

segmented regions can be adjust by a parameters, which is set as 10 in the experiments to generate
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results in Figure 10 and Figure 11.

7.1.2 Detect possibly erroneous low-contrast object boundary regions

To find candidate regions for more careful analysis, only certain regions at the boundary between

the foreground and the background need to be considered. Those regions have similar colors but

different labels as described in the section 7.1.1. The boundary regionsUbd are defined as the

regions that have at least one neighboring region with a different initial labeling. For example, if a

foreground regionAi has a neighborBj that is marked as background, thenAi andBj are boundary

regions. Such regions are required to share a boundary that is at least 4 pixels long.

For each boundary region, the mean colorµbd is calculated, and the neighbor of opposite label with

the most similar mean color is found. All the boundary regions Ubd are sorted according to their

minimal color differencesdi,j
bd . Then the regions withdi,j

bd < dThresh are selected as the possibly

erroneous low-contrast object boundary regions to be refined. The thresholddThresh is simply the

median color difference over all boundary region pairs suchthat one region is foreground and the

other one is background.

7.1.3 Refine possibly erroneous boundary regions

After all possibly erroneous low-contrast object boundaryregions are detected, they are analyzed

and reclassified. The assumption is that the initial segmentation using the mean-shift algorithm

includes the correct region boundary. Using the local and global information of the pixels inside

each region, each pixel is classified to be foreground or background. Then the number of foreground

and background pixels are counted inside each region. If oneregion has more foreground pixels, it

is classified as a foreground region, otherwise as background.

This problem can be formulated as a binary labeling problem of all the pixels belonging to the sus-

picious low-contrast object boundary regions, with different energy terms than previous work [19].

The algorithm not only considers the pixels’ similarities to their neighbors, but also their similarities
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to the regions marked by the user in terms of color means and standard deviations.

Suppose all the pixels in the suspicious low-contrast object boundary regions form a graphG =

〈υ, ε〉, whereυ is the set of all pixels andε is the set of all arcs connecting the four adjacent pixels.

The algorithm assigns a unique labelxi for each pixeli ∈ υ, wherexi = 1 if i belongs to foreground

andxi = 0 if i belongs to background. The energy function to minimize is

E(X) =
∑

i∈υ

E1(xi) + λ
∑

(i,j)∈ε

E2(xi, xj), (15)

whereE1 is likelihood energy,E2 is prior energy, andλ = 1 in our experiments.E1 encodes

the color similarity of a pixel to the marked foreground or background, taking into account the

color standard deviation (std) within the regions, which can be regarded as the simplest texture

information. They are also used to weight the color difference and std difference.

For each pixeli, supposeC(i) is its color,µF
n is the mean color of marked foreground regions,µB

m

is the mean color of marked background regions, andσ(i) is the std of the region which it belongs

to. σF
n is the foreground region std, andσB

m is the background region std. The following distances

are computed:







































dmF
i = minn ‖ C(i)− µF

n ‖

dmB
i = minm ‖ C(i)− µB

m ‖

dσF
i = minn ‖ σ(i)− σF

n ‖

dσB
i = minm ‖ σ(i) − σB

m ‖

. (16)

Then,E1(xi) is defined as follows:

E1(xi = 1) =
zF

zF + zB
(17)

E1(xi = 0) =
zB

zF + zB
, (18)

wherezX = 1
σ(i)σX

n
dmX

i + σ(i)σX
n dσX

i for X ∈ {F,B}.
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(a) (b) (c) (d) (e)

Figure 10: Comparisons between the method in [25] and the proposed algorithm. (a) The source
images with user input strokes; blue strokes are used to markthe background regions, and red
strokes are used to mark the foreground regions. (b) Resultsobtained by the method in [25]. (c)
Enlarged boundary region of the results obtained by method in [25]. (d) Results obtained by the
proposed algorithm. (e) Enlarged corrected boundary region by the proposed algorithm.

Because the marked boundary regions have been eliminated from Section 7.1.2, the Likelihood

energy is different from that of equation (2) in [19]. The stdof regions is also included, and the

intuition is that if the region has high color std,dσi
is more important in the comparison, otherwise

dmi
is more important.

As in the methodology of [19],E2 is the energy due to the gradient along the object boundary. It

also acts like a smoothing term, enforcing that similar neighboring pixels have the same label.

E2(xi, xj) =
|xi − xj |

(‖C(i)− C(j)‖2 + 1)× scale
. (19)

The difference is that the energy between pixels belonging to different regions is scaled down, so

that the cut through the region boundary is facilitated. In the experiment,scale = 1 if pixel i andj

belong to the same region,scale = 2 otherwise.

There are many methods to minimize the energy function. The max-flow library [2] is one of

the most efficient. Note that the assumption that the initialover-segmentation includes all correct

boundary segments is crucial for good results.

Figure 11 shows the results of applying this methodology to the building image.
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Figure 11: (a) The image with user input strokes; blue strokes are used to mark the background re-
gions, and red strokes are used to mark the foreground regions. (b) Result obtained by the proposed
algorithm.

7.2 Fast Interactive Image Segmentation by DiscriminativeClustering

Unlike all the methods using complex global optimization ofenergy functions[1, 16, 8], the in-

teractive image segmentation algorithm proposed in [21] begins with an initial over-segmentation

using the mean shift algorithm and follows this by discriminative clustering and local neighborhood

classification. It is straightforward to implement, much faster than graph cuts, and can be further

speeded up by an image pyramid and boundary refinement procedure [20].

The algorithm in [21] contains the following steps and is illustrated in Figure 12.

7.2.1 Pre-segmentation by the mean-shift algorithm

After the user input strokes to specify the foreground and the background, the selected image is first

over-segmented using the mean-shift algorithm [7]. There are three reasons for choosing the mean-

shift algorithm for the initial over-segmentation. First,it is observed to preserve the boundaries

better than other methods [10, 27]. Second, its speed has been improved significantly in recent

years [12, 26]. Third, there are fewer parameters to tune, and our algorithm is not sensitive to the

change of parameters as long as they are within a reasonable range.
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(a) (b) (c)

(d) (e) (f)

Figure 12: Steps of the proposed algorithm: (a) Original image with user input. (b) Over-
segmentation by the mean-shift algorithm. (c) Result afterdiscriminative clustering, with red in-
dicating foreground, blue indicating background, and original color indicating ambiguous regions.
(d) Result after merging ambiguous regions from (c). (e) Result of local neighborhood pruning. (f)
Final result on color image with bounding box shown.

7.2.2 Merge regions by discriminative clustering

Region merging is the critical step that makes our algorithman order of magnitude faster than other

methods after the pre-segmentation. After the user input isgiven, the algorithm calculates the mean

color of marked foreground and background regions. Supposethere areNf foreground regionsMf

marked by the user, andNb marked background regionsMb. For each regionAi ∈ Mf andBj ∈

Mb, their mean colorsµAi
andµBj

in CIELab color-space are computed. The minimal difference

between the mean colors of the marked foreground and background regions is also computed to be

taken as the thresholddthresh for later clustering usage. That is,dthresh = min(µAi
− µBj

). If

dthresh itself is smaller than a thresholdλ, then it is doubled. The intuition is that if some marked

foreground and background segments have very similar colors, more ambiguous regions need be
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further processed (Section 7.2.3). In the implementation to output Figure 12,λ is set to2.

Two three-dimensional kd-trees are constructed, one for each type of marked region. In the fore-

ground kd-tree, each node stores the mean color of one markedforeground region, and in the back-

ground kd-tree, each node stores the mean color of one markedbackground region. For each un-

marked regionRu, the algorithm takes its mean color as a query point in the 3D space and does

a nearest neighbor search in those two kd-trees. This quickly returns the marked regionsAnn and

Bnn that have the most similar mean color to it, and the color differencesduf anddub.

Let difd = duf − dub. If difd > dthresh, Ru is marked as background. Ifdifd < −dthresh, Ru

is marked as foreground. The output of this step on the bird image is shown in Figure 12 (c), where

the foreground regions are marked red, background regions are blue, and the ambiguous regions are

just marked with their original colors. Some regions with dark green remain ambiguous.

7.2.3 Local neighborhood region classification and pruning

After initial cluster merging, there may still be unmarked regions that are not classified as either

foreground or background. Whereas in the first step the unmarked regions are classified only by

their mean colors without considering the spatial information, the local neighborhood information

is utilized to better prune the segmentation result. There are two steps:

1. If there areNu remaining unmarked regions from the first processing step, each of them is

assigned the label of the most similar of its neighboring regions in terms of their mean color.

If the most similar neighboring region is also an unmarked region, they are merged together

to become a new unmarked region and the process repeats.

If there is a tie again in terms of the most similarly labeled neighboring region, the label of

the region that has the most similar color variance is used.

For the bird image, this step generates the image shown in Figure 12 (d), with white indicating

foreground and black indicating background.

24



2. After all the regions have been marked as either foreground or background, a connected com-

ponents algorithm [28] is applied to find isolated foreground or background regions that are

surrounded by regions of the opposite labeling. The labels of isolated regions are changed to

the opposite label only when the following conditions are satisfied:

(a) The region was not marked by the user.

(b) The region is not the biggest region with that label.

(c) The region is smaller than its surrounding regions.

For the bird image, this step generates the image Figure 12 (e). This mask is used to cut out the

object as shown in Figure 12 (f).

With different user inputs, this algorithm can help the usersegment out different objects in the

building image. Figure 13 shows two different sets of user inputs and the corresponding results.

Figure 13: (a) Original image with user input. (b) Segmentation results.
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The first user marked the building, trees, and some of the pedestrian area as foreground and only

the sky as background. The resulting segmentation retainedthe building, the trees, and all of the

pedestrian area. The second user marked the building as foreground, but she marked the trees,

pedestrian area, and sky as background. In this case the building was segmented from the image.

Not only the trees on the left of the building, but a tree in front of the building was removed.

8 Conclusions

In this paper, we have described the most common segmentation algorithms currently used by the

computer vision community for possible use in remote sensing. The K-means algorithm is the sim-

plest and most commonly used algorithm, and the EM clustering algorithm is a probabilistic version

of K-means. They both require the user to preselect the number of clusters K. The mean-shift algo-

rithm has become popular because it does not require the number of clusters to be selected, but it has

its own parameters that also control the number of and sizes of the regions. Watershed segmentation

is based on the idea of catchment basins in geography. The watershed segmentation algorithm has

mainly been used for fairly simple foreground-background segmentation, such as images of dark

blobs (ie. cell nuclei) on a light background. It does not seem useful for remote sensing applica-

tions. Normalized graph cuts is a very powerful algorithm that is now used heavily in computer

vision applications. It finds the best place to cut the graph the represents image pixels (or small

regions) connected by edges representing their similarityand iterates until a threshold is reached on

the normalized cut value. It has been tried on multiple different forms of data (gray tone images,

color images, videos) and should be consided for remote sensing applications. Finally, interactive

segmentation can be used when automatic methods are not accurate enough for the desired applica-

tion. We discuss interactive segmentation methods from ourown recent research and show results

both on general images and on the building image used to show results of all the methods throughout

this paper.
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