3D Shape Analysis for Quantification, Classification and Retrieval

Indriyati Atmosukarto PhD Defense

Advisor: Prof Linda Shapiro

General Motivation

Increasing number of 3D objects available

- Want to store, index, classify and retrieve objects automatically
- Need 3D object descriptor that captures global and local shape characteristics

Medical Motivation

- Researchers at Seattle Children's use CT scans and 3D surface meshes
- Investigate head shape dysmorphologies due to craniofacial disorders
- Want to represent, analyze and quantify variants from 3D head shapes

22q11.2 Deletion Syndrome (22q11.2DS)

- Caused by genetic deletion
- Cardiac anomalies, learning disabilities
- Multiple subtle physical manifestations
- Assessment is subjective

Deformational Plagiocephaly

- Flattening of head caused by pressure
- Delayed neurocognitive development
- Assessment is subjective and inconsistent
- Need objective and repeatable severity quantification method

Objective

- Investigate new methodologies for representing 3D shapes
- Representations are flexible enough to generalize from specific medical to general 3D object tasks
- Develop and test for 3D shape classification, retrieval and quantification

Outline

- Related Literature
- Datasets
- Base Framework
- 3D Shape Analysis
- Conclusion

Shape Retrieval Evaluation Contest (SHREC)

- Benchmark with common test set and queries
- Objective: evaluate effectiveness of 3D shape retrieval algorithms
- No descriptor performs best for all tasks

3D Object Descriptor

	Feature-	Graph-	View-
	based	based	based
	Shape distributions	Skeleton	Light Field Descriptor
Eg	ATTropped	The second	
+	Compact	Articulated object	Best in SHREC
-	Not discriminative	Computationally expensive	Computationally expensive

Deformational Plagiocephaly Measurements

- Anthropometric landmark
 - Physical measurements using caliper
- Template matching

eu tr ft ft ft fz sj fz t bri ex gn

Kelly et al. 1999

- Subjective, time consuming, intrusive

Landmark photographs

Cranial Index (CI) Oblique Cranial Length Ratio (OCLR)

Hutchison et al. 2005

22q11.2DS Measurements

- Anthropometric landmark
- 2D template landmark + PCA

Boehringer et al. Gabor wavelet + PCA to analyze 10 facial dysmorphologies

- Manual landmarks

• 3D mean landmark + PCA

Hutton et al. Align to average face + PCA

Outline

- Related Literature
- Datasets
- Base Framework
- 3D Shape Analysis
- Conclusion

Datasets

- 22q11.2DS
- Deformational Plagiocephaly
- Heads

similar overall shape with subtle distinctions

SHREC

→ non similar shapes

22q11.2DS Dataset

- Dataset: 189 (53 + / 136 -),86 (43 + / 43 -)
- Assessed by craniofacial experts
 - Selected 9 facial features that characterize disease

Deformational Plagiocephaly Dataset

- Dataset: 254 (154+/100 -), 140 (50+/90 -)
- Assessed by craniofacial experts
 - 5 different affected areas of head

Heads Dataset

- 15 original objects 7 classes
- Randomly morph each object

SHREC Dataset

• 425 objects - 39 classes

Outline

- Related Literature
- Datasets
- Base Framework
- 3D Shape Analysis
- Conclusion

Base Framework

Learning Salient Points

- Salient points are application dependent
- Classifier learns characteristics of salient points

Learning Salient Points

- 22q11.2DS
 - Training on subset craniofacial landmarks

- Deformational Plagiocephaly
 - Training points marked on flat areas on head

Learning Salient Points – General 3D Objects

Training on craniofacial landmarks on different classes of heads

Predicted salient points

2D Longitude-Latitude Salient Map

Salient Point Pattern Projection

- Discretize saliency according to score
- Map onto 2D plane via longitude-latitude transformation

$$\theta_i = \arctan(\frac{p_{iz}}{p_{ix}}) \quad \phi_i = \arctan(\frac{p_{iy}}{\sqrt{(p_{ix}^2 + p_{iz}^2)}})$$

Classification using 2D Map

Dataset	2D Salient map	LFD	SPH	D2	AAD
22q11.2DS	0.867	0.741	0.746	0.619	0.73
Plagiocephaly	0.803	0.72	0.673	0.650	0.685
SHREC	0.569	0.759	0.715	0.502	0.549

- LFD Light Field Descriptor
- SPH Spherical Harmonics
- D2 Shape Distribution
- AAD Angle Histogram

Retrieval using 2D Map

Retrieval on SHREC

2D Salient map	m LFD	SPH	D2	AAD
0.144	0.097	0.120	0.361	0.349

2D salient map retrieval results

Related Work

Light Field Descriptor [Chen et al., 2003]

1. Given two 3D models rotated randomly

3. Compare 2D images from another angle

2. Compare 2D images from same viewing angles

4.Best match = Rotation of camera position with best similarity

Salient Views

- Goal: improve LFD by selecting only 2D salient views to describe 3D object
- Discernible and useful in describing object

Salient Views

- Silhouette with contour salient points
 - Surface normal vector \perp camera view point

Greedy clustering

Selecting Salient Views

- Accumulate # contour salient points
- Sort views based on # contour salient pts
- Select top K salient views

Select top K distinct salient views (DSV)

Salient Views - Number of views

Distinct Salient Views vs Light Field Descriptor

No	Class	# Objects	Avg $\#$ distinct	Max distinct	LFD
			salient views	salient views score	score
1	human-diff-pose	15	12.33	0.113	0.087
2	monster	11	12.14	0.196	0.169
3	dinosaur	6	12.33	0.185	0.169
4	4-legged-animal	25	12.24	0.274	0.186
5	hourglass	2	11.50	0.005	0.001
6	chess-pieces	7	12.14	0.085	0.085
7	statues-1	19	12.16	0.267	0.250
8	statues-2	1	13.00	0.000	0.000
9	bed-post	2	12.00	0.124	0.008
10	statues-3	1	12.00	0.000	0.000

- Average score: 0.121 (DSV) vs 0.098 (LFD)
- Number of views: ~12 (DSV) vs 100 (LFD)

Salient Views - Runtime

- Bottleneck: feature extraction step
- Feature extraction runtime comparison

	~			
Method	Setup	View rendering	Descriptor construction	Total time
Max distinct views LFD 100 views	$\begin{array}{c} 0.467 \mathrm{s} \\ 0.396 \mathrm{s} \end{array}$	$\begin{array}{c} 0.05\mathrm{s} \\ 4.278\mathrm{s} \end{array}$	$\begin{array}{c} 0.077\mathrm{s} \\ 4.567\mathrm{s} \end{array}$	$0.601 s \\ 9.247 s$

- 15-fold speed up compare to LFD
- Reduce number of views to 10%

Global 2D Azimuth-Elevation Angles Histogram

- 3D Shape Quantification for Deformational Plagiocephaly
- Classification of 22q11.2DS

3D Shape Quantification for Deformational Plagiocephaly

- Discretize azimuth elevation angles into 2D histogram
- Hypothesis: flat parts on head will create high-valued bins

Shape Severity Scores for Posterior Plagiocephaly

- Left Posterior Flatness Score (LPFS)
- Right Posterior Flatness Score (RPFS)
- Asymmetry Score (AS) = RPFS LPFS
- Absolute Asymmetry Score (AAS)

Classification of Posterior Plagio

Absolute Asymmetry Score (AAS) vs Oblique Cranial Length Ratio (OCLR)

Classification of Posterior Plagio

Absolute Asymmetry Score (AAS) vs Oblique Cranial Length Ratio (OCLR)

Classification of Deformational Plagiocephaly

- Treat 2D histogram as feature vector
- Classify five plagiocephaly conditions

Posterior	Brachycephaly	Forehead	Ear	Overall
plagiocephaly		asymmetry	asymmetry	severity
0.793	0.868	0.674	0.603	0.766

Classification of 22q11.2DS

Treat 2D histogram as feature vector

	8×8	16×16	$24{\times}24$	32×32	Experts' median
Whole 2D hist	0.651	0.569	0.79	0.684	0.68

Classification of 22q11.2DS Facial Features

	8×8	16×16	24×24	32×32
Midface Hypoplasia	0.639	0.744	0.697	0.651
Tubular Nose	0.709	0.593	0.581	0.663
Bulbous Nasal Tip	0.593	0.581	0.581	0.639
Prominent Nasal Root	0.547	0.639	0.616	0.658
Small Nasal Alae	0.561	0.675	0.571	0.560
Retrusive Chin	0.526	0.674	0.560	0.546
Open Mouth	0.875	0.799	0.844	0.683
Small Mouth	0.671	0.526	0.752	0.585
Downturned Mouth	0.613	0.539	0.553	0.630

Learning 3D Shape Quantification

- Analyze 22q11.2DS and 9 associated facial features
- Goal: quantify different shape variations in different facial abnormalities

Learning 3D Shape Quantification -Facial Region Selection

- Focus on 3 facial areas
 - Midface, nose, mouth
- Regions selected manually

Learning 3D Shape Quantification - 2D Histogram Azimuth Elevation

• Using azimuth elevation angles of surface normal vectors of points in selected region

Learning 3D Shape Quantification -Feature Selection

- Determine most discriminative bins
- Use Adaboost learning
- Obtain positional information of important region on face

Learning 3D Shape Quantification -Feature Combination

- Use Genetic Programming (GP) to evolve mathematical expression
- Start with random population
 - Individuals are evaluated with fitness measure
 - Best individuals reproduce to form new population

Learning 3D Shape Quantification -Genetic Programming

- Individual:
 - Tree structure
 - Terminals e.g variables eg. 3, 5, x, y, ...
 - Function set e.g +, -, *, ...
 - Fitness measure e.g sum of square ...

Learning 3D Shape Quantification -Feature Combination

- 22q11.2DS dataset
 - Assessed by craniofacial experts
 - Groundtruth is union of expert scores
- Goal: classify individual according to given facial abnormality

Learning 3D Shape Quantification -Feature Combination

- Individual
 - Terminal: selected histogram bins
 - Function set: +,-,*,min,max,sqrt,log,2x,5x,10x
 - Fitness measure: F1-measure

Objective: investigate function sets

- Combo1 = {+,-,*,min,max}
- Combo2 = {+,-,*,min,max,sqrt,log2,log10}
- Combo3 = {+,-,*,min,max,

2*x*, 5*x*, 10*x*, 20*x*, 50*x*, 100*x*}

 $- \text{ Combo4} = \{+,-,*,min,max,sqrt,log2,log10, \\ 2x,5x,10x,20x,50x,100x\}$

Best F-measure out of 10 runs

Facial anomaly	Combo1	Combo2	Combo3	Combo4
Midface Hypoplasia	0.8393	0.8364	0.8527	0.80
Tubular Nose	0.8571	0.875	0.8667	0.8813
Bulbous Nasal Tip	0.8545	0.8099	0.8103	0.7544
Prominent Nasal Root	0.8667	0.8430	0.8571	0.8335
Small Nasal Alae	0.8846	0.8454	0.8454	0.8571
Retrusive Chin	0.7952	0.8000	0.7342	0.7586
Open Mouth	0.9444	0.9714	0.9189	0.9189
Small Mouth	0.6849	0.7568	0.6829	0.7750
Downturned mouth	0.8000	0.7797	0.8000	0.8000

Tree structure for quantifying midface hypoplasia

((X7-X7) + (X6+(((X6+X6)-X7)+(X7-X2)))+X7))+(X9-5X9+X7+X7)Xi are the selected histogram bins

56

Objective: compare local facial shape descriptors

Facial abnormality	Region Histogram	Selected Bins	GP
Midface hypoplasia	0.697	0.721	0.853
Tubular nose	0.701	0.776	0.881
Bulbous nasal tip	0.617	0.641	0.855
Prominent nasal root	0.704	0.748	0.867
Small nasal alae	0.733	0.801	0.885
Retrusive chin	0.658	0.713	0.800
Open mouth	0.875	0.889	0.971
Small mouth	0.694	0.725	0.775
Downturned mouth	0.506	0.613	0.800

Objective: compare GP to global approach

Facial abnormality	GP	Saliency Map	Global 2D Hist
Midface hypoplasia	0.853	0.674	0.744
Tubular nose	0.881	0.628	0.709
Bulbous nasal tip	0.855	0.616	0.639
Prominent nasal root	0.867	0.663	0.658
Small nasal alae	0.885	0.779	0.675
Retrusive chin	0.800	0.628	0.674
Open mouth	0.971	0.707	0.875
Small mouth	0.775	0.581	0.752
Downturned mouth	0.800	0.566	0.630

Objective: predict 22q11.2DS

Method	F-measure
Quantification vector with SVM	0.709
Quantification vector with Adaboost	0.721
Quantification vector with GP	0.821
Global saliency map	0.764
Selected bins of global saliency map	0.9
Global 2D histogram	0.79
Selected bins of global 2D histogram	0.9
Selected bins of global saliency map with GP	0.96
Selected bins of global 2D histogram with GP	0.92
Expert's median	0.68

Outline

- Related Literature
- Datasets
- Base Framework
- 3D Shape Analysis
- Conclusion

Contributions

- General methodology for 3D shape analysis
- Learning approach to detect salient points
- 3D object signatures
 - 2D longitude-latitude salient map
 - 2D histogram of azimuth-elevation angles
- Methodology for quantification of craniofacial disorders

Future Directions

- Analyze other craniofacial disorders

 Cleft lip/palate, craniofacial microsomia
- Association of shape changes

– Over time, pre/post op

- Genotype-phenotype disease association
- Translate 3D shape quantification into plain English language

Acknowledgements

- PhD Committee Members
 - Linda Shapiro; James Brinkley; Maya Gupta;
 Mark Ganther; Steve Seitz
- Collaborators at Seattle Children's Hospital Craniofacial Center
 - Michael Cunningham; Matthew Speltz; Brent Collett; Carrie Heike; Christa Novak
- Research Group
- This research is supported by the National Science Foundation under grant number DBI-0543631

Publications

- [1] 3D Head Shape Quantification for Infants with and without Deformational Plagiocephaly. <u>I. Atmosukarto</u>, L. G. Shapiro, J. R. Starr, C. L. Heike, B. Collett, M. L. Cunningham, M. L. Speltz. Accepted for publication in *The Cleft-Palate Craniofacial Journal*, 2009.
- [2] 3D Object Classification using Salient Point Patterns With Application to Craniofacial Research

I. Atmosukarto, K. Wilamowska, C. Heike, L. G. Shapiro.

Accepted for publication in *Pattern Recognition*, 2009.

[3] The Use of Genetic Programming for Learning 3D Craniofacial Shape Quantification. I. Atmosukarto, L. G. Shapiro, C. Heike.

Accepted in International Conference on Pattern Recognition, 2010.

- [4] 3D Object Retrieval Using Salient Views. <u>I. Atmosukarto</u> and L. G. Shapiro. In ACM Multimedia Information Retrieval, 2010.
- [5] Shape-Based Classification of 3D Head Data. L.Shapiro, K. Wilamowska, <u>I. Atmosukarto</u>, J. Wu, C. Heike, M. Speltz, and M. Cunningham. In International Conference on Image Analysis and Processing, 2009.
- [6] Automatic 3D Shape Severity Quantification and Localization for Deformational Plagiocephaly.

I. Atmosukarto, L. Shapiro, M. Cunningham, and M. Speltz. In Proc. SPIE Medical Imaging: Image Processing, 2009.

[7] A Learning Approach to 3D Object Classification. I. Atmosukarto, L. Shapiro. In Proc. S+SSPR, 2008.

[8] A Salient-Point Signature for 3D Object Retrieval. I. Atmosukarto, L. G. Shapiro.

In Proc. ACM Multimedia Information Retrieval, 2008.

Back up slides

Kiran 3 months old

3D Descriptors

- Desirable properties:
 - Efficient
 - Discriminative
 - Rotation-invariant
- Descriptor representation:
 - Feature-based
 - Graph-based
 - View-based

Feature-based descriptors

- Represent as point in high-dimensional space
- Two shapes are similar if close in space
- Sub-categories:
 - Global features
 - Global feature distribution
 - Spatial map
 - Local features

Feature-based descriptors

- Global features
 - Volume, area, moments
- Global feature distributions
 - Distribution of distance between random

- + Compact, rotation invariant
- Not discriminative enough

Feature-based descriptors

- Spatial maps

 Shell and sectors
 Not rotation invariant

 Not rotation invariant
- Local features

Spin Images Johnson et al. 1999

+ Allow partial matching- More complex

Graph-based descriptors

- Extract geometric meaning by showing how components are linked
- Model graph, Reeb graph, Skeleton

Reeb Graph Hilaga et al. 2001

Skeleton Sundar et al. 2003

+ Good for articulated object- Computationally expensive

View-based descriptors

- Two 3D objects are similar if they look similar from all viewing angles
- Light Field Descriptor

+ Best performer in SHREC- Computationally expensive

Chen et al. 2003
