Interest Operator Lectures

- **0. Introduction to Interest Operators**
- 1. Harris Corner Detector: the first and most basic interest operator; Matt Brown's invariant features
- 2. Kadir Entropy Detector and its use in object recognition
- 3. SIFT interest point detector and region descriptor; HOG descriptor
- 4. MSER region detector and Harris Affine in region matching
- 5. Additional applications

0. Introduction to Interest Operators

- Find "interesting" pieces of the image
 - e.g. corners, salient regions
 - Focus attention of algorithms
 - Speed up computation
- Many possible uses in matching/recognition
 - Search
 - Object recognition
 - Image alignment & stitching
 - Stereo
 - Tracking
 - **–** ...

Interest points

0D structure: single points

→ not useful for matching

1D structure: lines

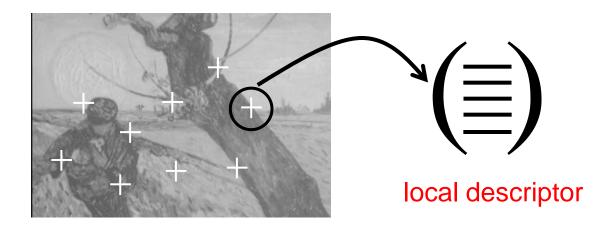
edge, can be localised in 1D, subject to the aperture problem

2D structure: corners

corner, or interest point, can be localised in 2D, good for matching

Interest Points have 2D structure.

Local invariant photometric descriptors -



Local: robust to occlusion/clutter + no segmentation

Photometric: (use pixel values) distinctive descriptions

Invariant: to image transformations + illumination, changes

History - Matching

- 1. Matching based on correlation alone
- 2. Matching based on geometric primitives e.g. line segments
- ⇒ Not very discriminating (why?)
- ⇒ Solution : matching with interest points & correlation

[A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry,

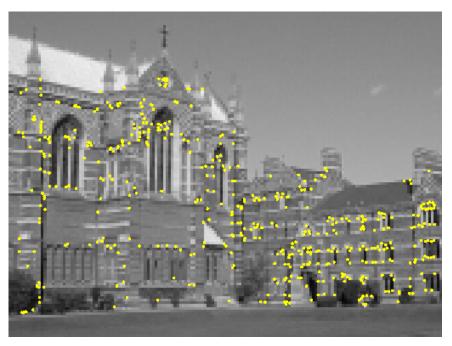
Z. Zhang, R. Deriche, O. Faugeras and Q. Luong, Artificial Intelligence 1995]

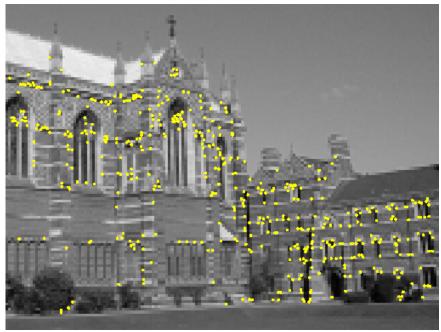
Zhang Approach

- Extraction of interest points with the Harris detector
- Comparison of points with cross-correlation
- Verification with the fundamental matrix

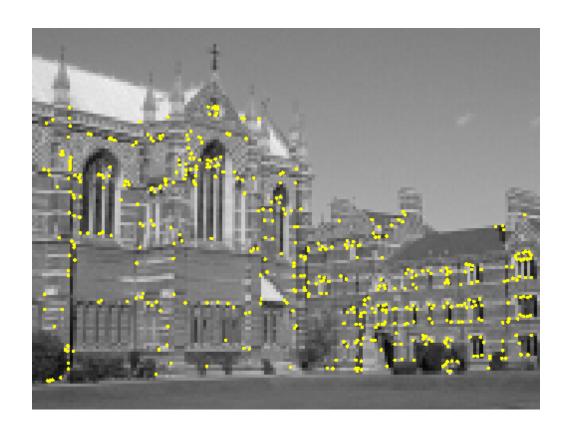
The fundamental matrix maps points from the first image to corresponding points in the second matrix using a homography that is determined through the solution of a set of equations that usually minimizes a least square error.

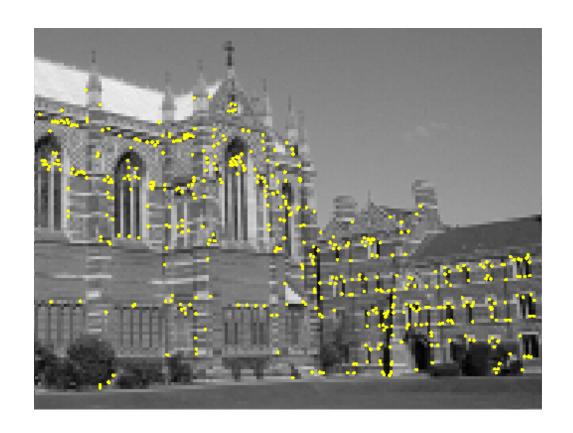
Preview: Harris detector



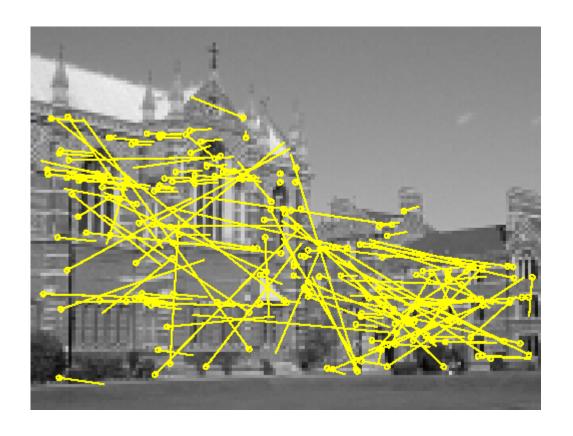


Interest points extracted with Harris (~ 500 points)





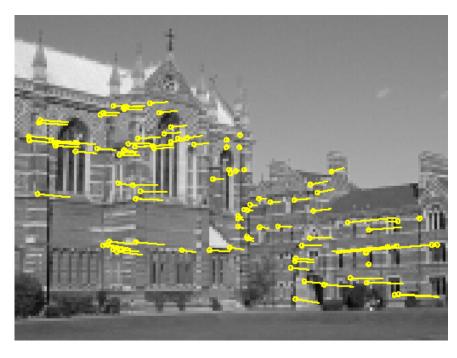
Cross-correlation matching



Initial matches – motion vectors (188 pairs)

Global constraints

Robust estimation of the fundamental matrix (RANSAC)

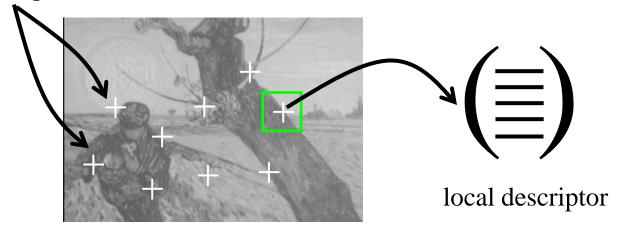


99 inliers

89 outliers

General Interest Detector/Descriptor Approach

interest points



- 1) Extraction of interest points
- 2) Computation of local descriptors
- 3) Determining correspondences
- 4) Selection of similar images

Based on the idea of auto-correlation

Important difference in all directions => interest point

13

Background: Moravec Corner Detector

- take a window w in the image
- shift it in four directions (1,0), (0,1), (1,1), (-1,1)
- compute a difference for each
- compute the min difference at each pixel
- local maxima in the min image are the corners

$$\mathbf{E}(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{u},\mathbf{v} \text{ in } \mathbf{w}} \mathbf{w}(\mathbf{u},\mathbf{v}) |\mathbf{I}(\mathbf{x}+\mathbf{u},\mathbf{y}+\mathbf{v}) - \mathbf{I}(\mathbf{u},\mathbf{v})|^2$$

Shortcomings of Moravec Operator

- Only tries 4 shifts. We'd like to consider "all" shifts.
- Uses a discrete rectangular window. We'd like to use a smooth circular (or later elliptical) window.
- Uses a simple min function. We'd like to characterize variation with respect to direction.

Result: Harris Operator

Auto-correlation fn (SSD) for a point (x, y) and a shift $(\Delta x, \Delta y)$

$$f(x, y) = \sum_{(x_k, y_k) \in W} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$

SSD means summed square difference

Discrete shifts can be avoided with the auto-correlation matrix

with
$$I(x_k + \Delta x, y_k + \Delta y) = \overbrace{I(x_k, y_k) + (I_x(x_k, y_k) - I_y(x_k, y_k))}^{\text{what is this?}} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

$$f(x,y) = \sum_{(x_k,y_k) \in W} \left(I_x(x_k,y_k) \quad I_y(x_k,y_k) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \right)^2$$

Rewrite as inner (dot) product

$$f(x,y) = \sum_{(x_k,y_k)\in W} (\begin{bmatrix} I_x(x_k,y_k) & I_y(x_k,y_k) \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix})^2$$

$$= \sum_{(x_k,y_k)\in W} \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \begin{bmatrix} I_x(x_k,y_k) \\ I_y(x_k,y_k) \end{bmatrix} \begin{bmatrix} I_x(x_k,y_k) & I_y(x_k,y_k) \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

The center portion is a 2x2 matrix

Have we seen this matrix before?

$$= \sum_{W} \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$
$$= \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \sum_{W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

$$= (\Delta x \quad \Delta y) \begin{bmatrix} \sum_{(x_k, y_k) \in W} (I_x(x_k, y_k))^2 & \sum_{(x_k, y_k) \in W} I_x(x_k, y_k) I_y(x_k, y_k) \\ \sum_{(x_k, y_k) \in W} (I_x(x_k, y_k)) I_y(x_k, y_k) & \sum_{(x_k, y_k) \in W} (I_y(x_k, y_k))^2 \end{bmatrix} (\Delta x)$$

Auto-correlation matrix M

- Auto-correlation matrix
 - captures the structure of the local neighborhood
 - measure based on eigenvalues of M
 - 2 strong eigenvalues => interest point
 - 1 strong eigenvalue => contour
 - 0 eigenvalue => uniform region
- Interest point detection
 - threshold on the eigenvalues
 - local maximum for localization

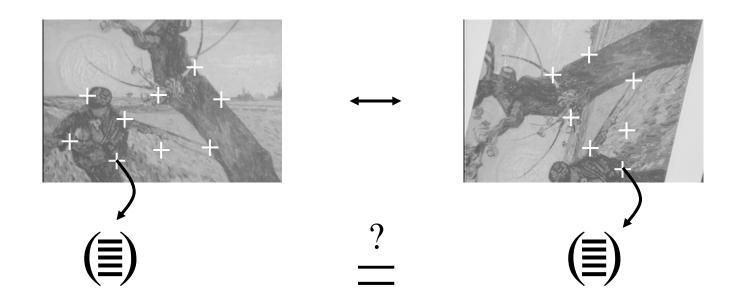
Some Details from the Harris Paper

- Corner strength $R = Det(M) k Tr(M)^2$
- Let α and β be the two eigenvalues. We don't have to calculate them! Instead, use trace and determinant:
- $Tr(M) = \alpha + \beta$
- $Det(M) = \alpha \beta$
- R is positive for corners, for edges, and small for flat regions
- Select corner pixels that are 8-way local maxima

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad \det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21} \\ \operatorname{tr}(\mathbf{A}) = a_{11} + a_{22}$$

)

Determining correspondences

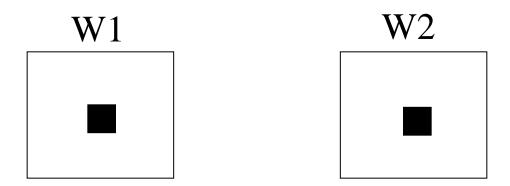


Vector comparison using a distance measure

What are some suitable distance measures?

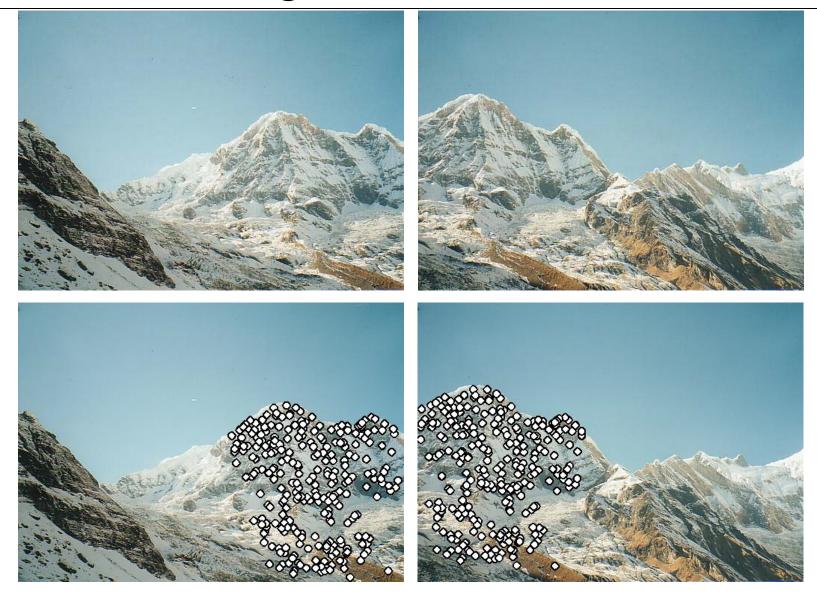
Distance Measures

 We can use the sum-square difference of the values of the pixels in a square neighborhood about the points being compared. This is the simplest measure.

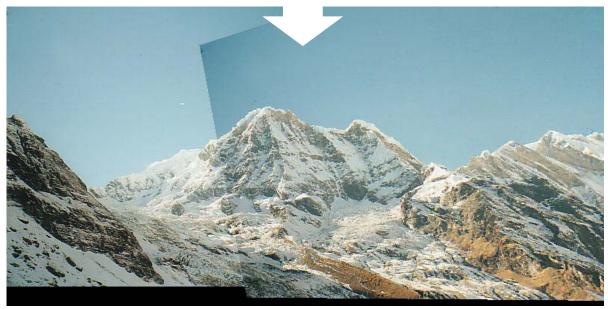


$$SSD = \sum (W1_{i,j} - W2_{i,j})^2$$

Some Matching Results from Matt Brown



Some Matching Results

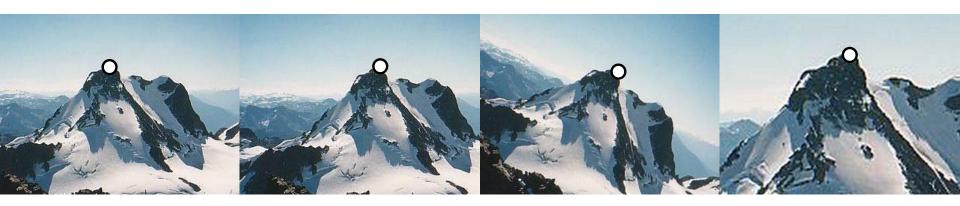


Summary of the approach

- Basic feature matching = Harris Corners & Correlation
- Very good results in the presence of occlusion and clutter
 - local information
 - discriminant greyvalue information
 - invariance to image rotation and illumination
- Not invariance to scale and affine changes
- Solution for more general view point changes
 - local invariant descriptors to scale and rotation
 - extraction of invariant points and regions

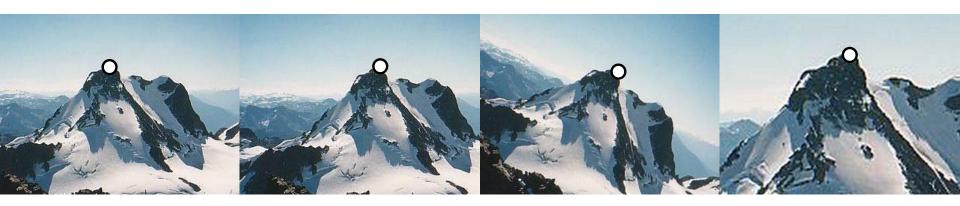
original	translated	rotated	scaled

	Translation	Rotation	Scale
Is Harris invariant?	?	?	?
Is correlation invariant?	?	?	?



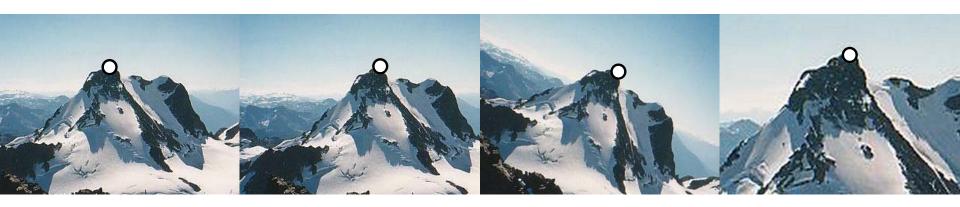
original	translated	rotated	scaled

	Translation	Rotation	Scale
Is Harris invariant?	?	?	?
Is correlation invariant?	?	?	?



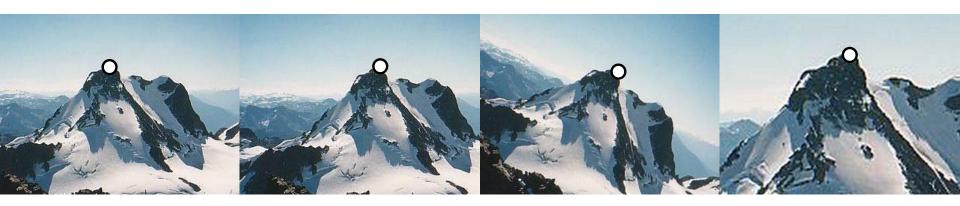
original	translated	rotated	scaled
o			

	Translation	Rotation	Scale
Is Harris invariant?	YES	?	?
Is correlation invariant?	?	?	?



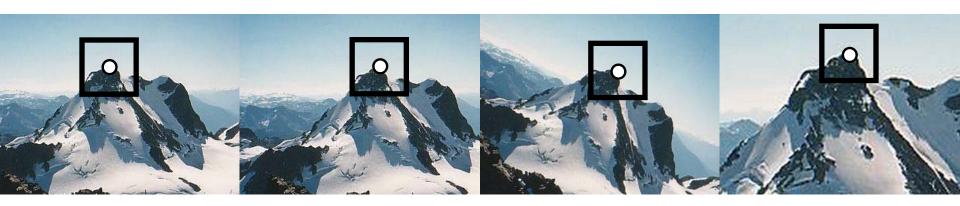
original translated rotated scaled

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	?
Is correlation invariant?	?	?	?



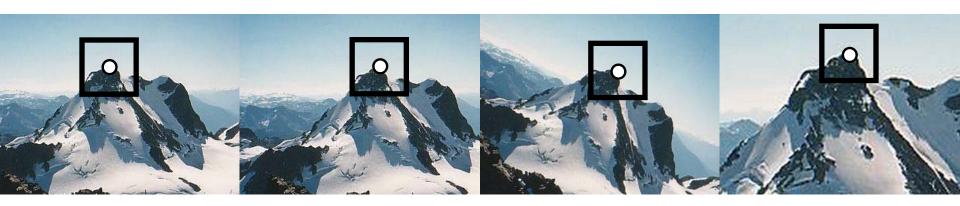
original	translated	rotated	scaled
o			

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	?	?	?



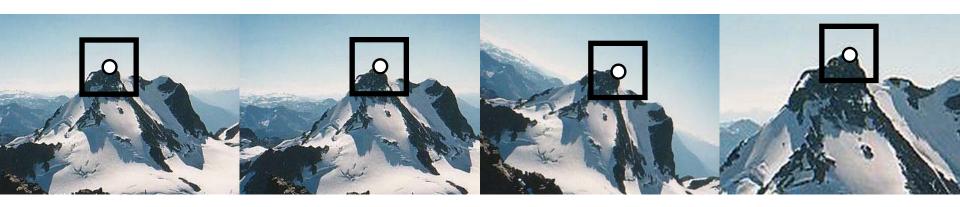
original translated rotated scaled

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	?	?	?



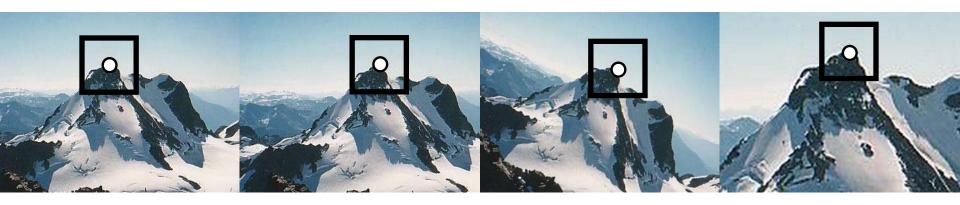
original translated rotated sca

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	?	?



original translated rotated scaled

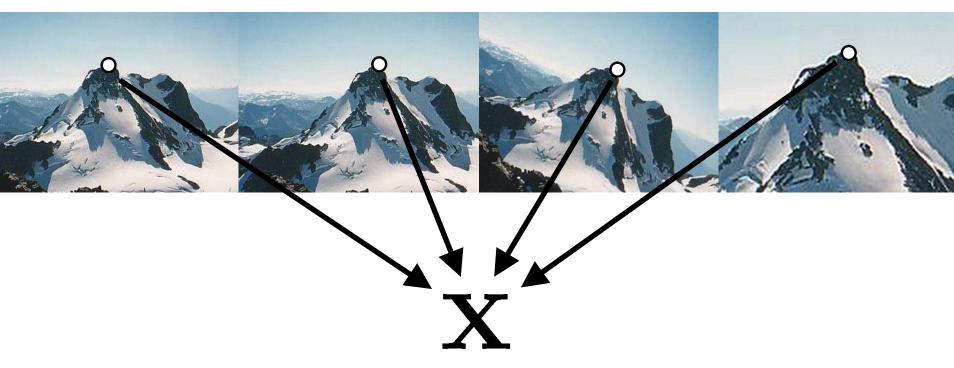
	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	NO	?



original	translated	rotated	scaled

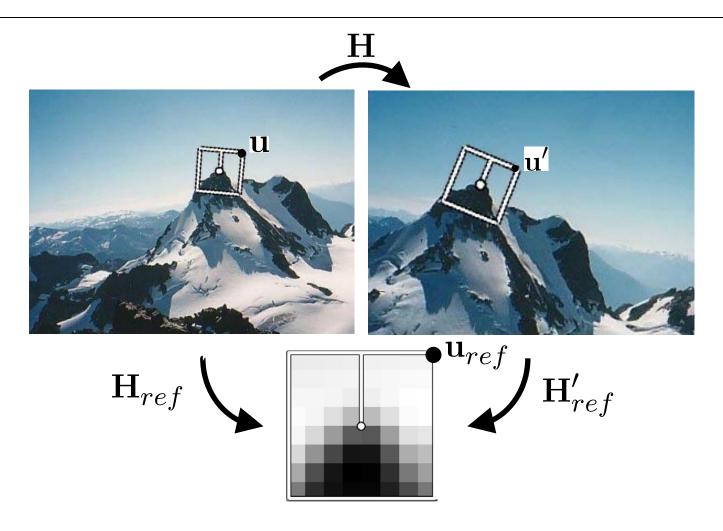
	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	NO	NO

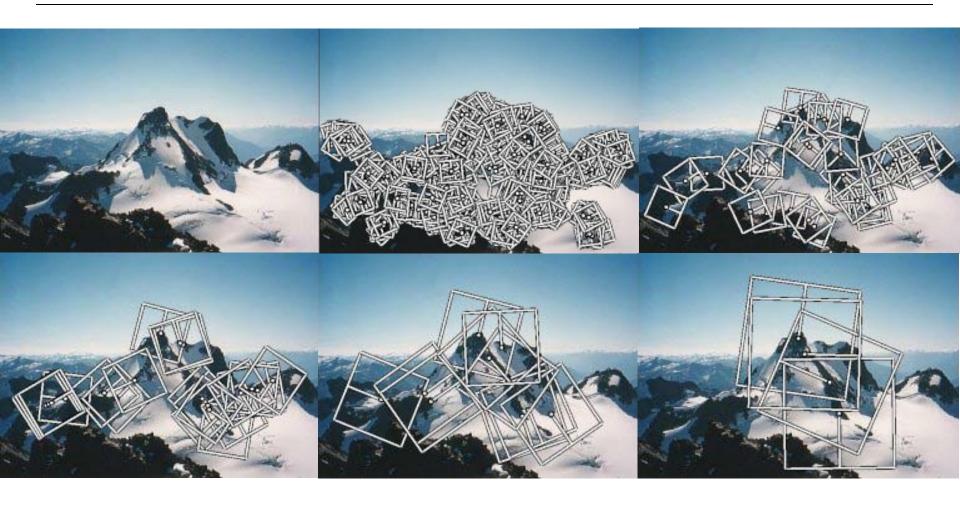
Matt Brown's Invariant Features



 Local image descriptors that are invariant (unchanged) under image transformations

Canonical Frames





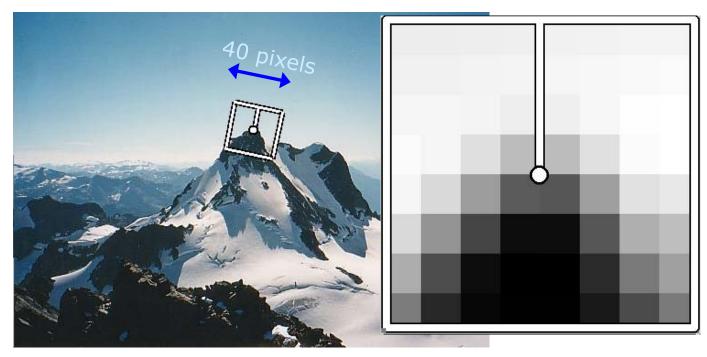
• Extract oriented patches at multiple scales using dominant orientation

• Sample scaled, oriented patch

- Sample scaled, oriented patch
 - 8x8 patch, sampled at 5 x scale

- Sample scaled, oriented patch
 - 8x8 patch, sampled at 5 x scale
- Bias/gain normalized (subtract the mean of a patch and divide by the variance to normalize)

$$-I'=(I-\mu)/\sigma$$



Matching Interest Points: Summary

- Harris corners / correlation
 - Extract and match repeatable image features
 - Robust to clutter and occlusion
 - BUT not invariant to scale and rotation
- Multi-Scale Oriented Patches
 - Corners detected at multiple scales
 - Descriptors oriented using local gradient
 - Also, sample a blurred image patch
 - Invariant to scale and rotation

Leads to: **SIFT** – state of the art image features