Building Rome in a Day

Sameer Agarwal, Google

Flickr growth

Rome via Flickr

The Tour Home

Sign Up

Explore -

Search everyone's photos

Search -

Search

Photos

Groups

People

trevi fountain

SEARCH

Advanced Search Search by Camera

We found 27,761 results for photos matching trevi and fountain.

View: Most relevant • Most recent • Most interesting

Show: Details . Thumbnails

View as slideshow (₱)

From NupurB

From BRUNO MÉNDEZ...

From * Toshio *

From *Magik &...

From Christopher...

From Nastrina1981

From jaki good

From Fabrizio...

From ...Skazi...

From Alida's...

From hbomb1947

From David d'O

Sponsored Results

Cruise The Mediteranian

Enjoy 11 days in Spain, France and Italy on this Mediteranian tour.

www.mayflowertours.com/medtour

Trevi Fountain Hotel

Compare hotel prices from over 120 top websites and save up to 70%.

Hotels.SideStep.com

Trevi Fountains

Compare prices, brands, and more at Smarter.com.

www.smarter.com

Hotels Trevi Fountain - Italy

Book now and save up to 75%. No reservation fee and pay at your hotel.

booking.com/hotels-trevi-Fountain

Fountain Trevi

Enjoy Savings & Selection On Fountain Trevi.

Shopzilla.com

Photo Tourism

Scene

Relative camera positions and orientations

Point cloud

Sparse correspondence

Photo Tourism overview

Scene reconstruction

Scene reconstruction

- Automatically estimate
 - position, orientation, and focal length of cameras
 - 3D positions of feature points

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987] to estimate fundamental matrices between pairs

Correspondence estimation

Image 1

Image 2

Image 3

Image 4

Link up pairwise matches to form connected components of matches across several images

Structure from motion

• Given many points in *correspondence* across several images, $\{(u_{ij}, v_{ij})\}$, simultaneously compute the 3D location \mathbf{p}_i and camera (or *motion*) parameters $(\mathbf{R}_i, \mathbf{t}_i)$

$$\begin{bmatrix} u_{ij} \\ v_{ij} \end{bmatrix} = f(R_j, t_j, p_i)$$

Structure from motion

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006

Microsoft Photosynth

Cities on the web

	Flickr	Picasa	images.google
Venice	1,300,000	7,800,000	12,000,000
Rome	2,600,000	26,000,000	20,000,000
Tokyo	3,200,000	12,000,000	19,800,000
New York	6,500,000	41,000,000	290,000,000
London	7,200,000	40,800,000	89,000,000

- Download a million images of Rome
- Match the images
- Build a 3D model of the city

- Download a million images of Rome
- Match the images
- Build a 3D model of the city

- Download a million images of Rome
- Match the images
- Build a 3D model of the city

- Download a million images of Rome
- Match the images
- Build a 3D model of the city

Do all of the above in a fully distributed manner on a 1000 node cluster in 24 hours.

Why?

- Interiors, high level of geometric detail, texture maps.
- Better models for Google/Virtual Earth, GPS, virtual sets for movie production.
- Historical preservation.
- Urban geography.
- Games set in the real world, Photocity, Grand Theft Auto "Roma".

Our Approach

- 1. Scrape images
- 2. Extract Features
- 3. Match Images
- 4. Reconstruct sparse image set (Skeletal Sets)
- 5. Reconstruct full image set (Bundle Adjustment)

Image Matching

Find points across images which correspond to the same point in the world.

- All pairs matching is data parallel, but expensive in CPU and network bandwidth (~10TB).
- 0.5 Trillion pairwise comparisons.
- 10k matches/sec = 1.5 years.

Rome via Flickr

Rome

Matching Algorithm

- Multi round propose and verify scheme
 - 2 rounds based on whole image similarity.
 - 4 rounds based on query expansion
- Verification = SIFT feature matching + RANSAC.

Whole Image Similarity

Text retrieval inspired approach.

- Represent images as high dimensional vectors using a vocabulary tree.
- Inner product between of vectors is the similarity between images.
- Top k scoring images are potential matches.

Matching Progress

Matching - Round 1

Matching - Round 2

Matching Statistics

Dataset	Size	Matches possible	Matches Tried	Matches Found	Time
Dubrovnik	58K	1.6 Billion	2.6M	0.5M	5 hrs
Rome	150K	11.2 Billion	8.8M	2.7M	13 hrs
Venice	250K	31.2 Billion	35.5M	6.2M	27 hrs

How good are we?

- "Ground Truth" for a 20K data-set.
- 0.25% of total matches performed.
- 90% of the true matches recovered.

1. Choose two images to seed the reconstruction.

1. Choose two images to seed the reconstruction.

- 1. Choose two images to seed the reconstruction.
- 2. Add cameras using pose estimation.

- 1. Choose two images to seed the reconstruction.
- 2. Add cameras using pose estimation.
- 3. Add 3d points via triangulation.

- 1. Choose two images to seed the reconstruction.
- 2. Add cameras using pose estimation.
- 3. Add 3d points via triangulation.

- 1. Choose two images to seed the reconstruction.
- 2. Add cameras using pose estimation.
- 3. Add 3d points via triangulation.
- 4. Non-linear refinement.

- 1. Choose two images to seed the reconstruction.
- 2. Add cameras using pose estimation.
- 3. Add 3d points via triangulation.
- 4. Non-linear refinement.
- 5. Goto step 2.

- 1. Choose two images to seed the reconstruction.
- 2. Add cameras using pose estimation.
- 3. Add 3d points via triangulation.
- 4. Non-linear refinement.
- 5. Goto step 2.

Stonehenge

Internet collections represent very non-uniform samplings of viewpoints -- all images are not created equal.

Given an image graph G, select a small set S of important images to reconstruct, bounding the loss in quality of the reconstruction.

Large Scale Reconstruction

- 1. Identify the Skeletal Set
- 2. Reconstruct the Skeletal Set incrementally
- 3. Add the remaining images using pose estimation.
- 4. Triangulate new points.
- 5. Non-linear refinement (Bundle Adjustment)

Results

Statistics

Datasets	Size	Cores	Largest component	Registered	Matching pairs	Match Time	Reconstruction Time
Dubrovnik	57,845	352	4,619	11,868	498,982	5 hrs	8 hrs
Rome	150,000	496	2,106	36,658	2,712,301	13 hrs	2 hrs
Venice	250,000	496	14,079	47,925	6,119,207	27 hrs	49 hrs

Rome: Colosseum

Rome: St. Peters Cathedral

Venice: The Canal

Venice: San Marco

Dubrovnik

The road ahead...

A live, fully textured, ever growing digital model of the world.

Sparse output from the SfM system

Dense patches from multi-view stereo

Courtesy Yasutaka Furukawa

Mesh output from the multi-view stereo

Courtesy Yasutaka Furukawa

Furukawa et al., CVPR 2010

References

- 1. **Rebuilding Rome in a Day** S. Agarwal, N. Snavely, I. Simon, R. Szeliski and S. Seitz, *ICCV 09*.
- 2. **Accurate, Dense and Robust Multiview Stereopsis**, Y. Furukawa and J. Ponce, *CVPR 07*.
- 3. Skeletal Graphs for Efficient Structure from Motion N. Snavely, S. Seitz and R. Szeliski, *CVPR 07*.
- 4. Photo Tourism: Exploring Photo Collections in 3D N. Snavely, S. Seitz and R. Szeliski, SIGGRAPH 06.

Collaborators

Noah Snavely **Cornell University**

Yasutaka Furukawa

Ian Simon University of Washington

Rick Szeliski Steve Seitz Microsoft Research

Thank you