- Project 2
- Out today
- Sign up for a panorama kit ASAP!
- best slots (weekend) go quickly...

VR Seattle: $\frac{h \text { ttp: } / / / \text { www.vrseattle.com/ }}{}$
Full screen panoramas (cubic): http://www.panoramas.dk Mars: http://www.panoramas.dk/fullscreen3/f2 mars97.htm

Today's Readings

- Szeliski and Shum paper (sections 1 and 2, skim the rest)

Project 2

1. Take pictures on a tripod (or handheld)
2. Warp to spherical coordinates
3. Extract features
4. Align neighboring pairs using RANSAC
5. Write out list of neighboring translations
6. Correct for drift
7. Read in warped images and blend them
8. Crop the result and import into a viewer

Roughly based on Autostitch

- By Matthew Brown and David Lowe
- http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane

Image reprojection

Basic question

- How to relate two images from the same camera center? - how to map a pixel from PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Don't need to know what's in the scene!

Image reprojection

Observation

- Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another

Homographies

Perspective projection of a plane

- Lots of names for this:
- homography, texture-map, colineation, planar projective map
- Modeled as a 2D warp using homogeneous coordinates

$$
\begin{gathered}
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\mathbf{p} \\
\mathbf{H}
\end{gathered}
$$

To apply a homography H

- Compute $\mathbf{p}^{\prime}=\mathbf{H p} \quad$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates
- divide by w (third) coordinate

Image warping with homographies

Panoramas

What if you want a 360° field of view?

Spherical reprojection

side view

How to map sphere onto a flat image?

- $(\hat{x}, \hat{y}, \hat{z})$ to $\left(x^{\prime}, y^{\prime}\right)$

Spherical projection

- Convert to spherical coordinates $(\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi)=(\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$
(\tilde{x}, \tilde{y})=(s \theta, s \phi)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)
$$

- s defines size of the final image
» often convenient to set $\mathrm{s}=$ camera focal length

Spherical reprojection

How to map sphere onto a flat image?

- $(\hat{x}, \hat{y}, \hat{z})$ to $\left(x^{\prime}, y^{\prime}\right)$
- Use image projection matrix!
- or use the version of projection that properly accounts for radial distortion, as discussed in projection slides. This is what you'll do for project 2.

top-down view

side view
top-down view

Spherical reprojection

Map image to spherical coordinates

- need to know the focal length

Aligning spherical images

Suppose we rotate the camera by θ about the vertical axis

- How does this change the spherical image?

Aligning spherical images

Suppose we rotate the camera by θ about the vertical axis

- How does this change the spherical image?
- Translation by θ
- This means that we can align spherical images by translation

Spherical image stitching

What if you don't know the camera rotation?

- Solve for the camera rotations
- Note that a pan (rotation) of the camera is a translation of the sphere!
- Use feature matching to solve for translations of spherical-warped images

Computing image translations

RAndom SAmple Consensus

Richard Szeliski
CSE 576 (Spring 2005): Computer

Least squares fit

Same basic approach works for any transformation

- Translation, rotation, homographies, etc.
- Very useful tool

General version

- Randomly choose a set of K correspondences
- Typically K is the minimum size that lets you fit a model
- Fit a model (e.g., homography) to those correspondences
- Count the number of inliers that "approximately" fit the model - Need a threshold on the error
- Repeat as many times as you can
- Choose the model that has the largest set of inliers
- Refine the model by doing a least squares fit using ALL of the inliers

Effect of window size

Image feathering

What if you're blending more than two images?

"Optimal" window: smooth but not ghosted

- Doesn't always work...

Pyramid blending

Create a Laplacian pyramid, blend each level

- Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

Image feathering

What if you have more than two images?

- Generate weight map for each image
- typically want large weight at center, small weight at edge
- Each output pixel is a weighted average of inputs
- be sure to divide by sum of weights at the end

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:

 athor=Blinn\%2C+J.F.

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the (α premultiplied) RGB α values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value Q: what if $\alpha=0$?

More advanced blending schemes

A quick survey...

Gradient-domain blending

Blend the gradients of the two images, then integrate For more info: Perez et al, SIGGRAPH 2003
Also called "Poisson" blending

Local alignment (deghosting)

Use local optic flow to compensate for small motions [Shum \& Szeliski, ICCV'98]

De-Ghosting

Figure 3: Deghosting a mosaic with motion parallax: (a) with parallax; (b) after single deghosting step (patch size 32); (c) multiple steps (sizes 32, 16 and 8).

Photomontage [Agarwala et al., SIGGRAPH 2004]

Photomontage [Agarwala et al., SIGGRAPH 2004]

Other types of mosaics

Figure 6 We use a set of porraits (first row) to mix and match facial features, to either improve a portrait, or create entirely new people. The faces are first hand-aligned, for example, toplace all the noses in the same location. In the first two images in the second row, we replace the closed eyes of a portrait with the
open eyes of another. The user paints strokes with the designated source objective to specify desired features. Next. we create a fictional person by combining three source portraits. Gradient-domain fusion is used to smooth out skin tone differences. Finally, we show two additional mixed portraits.

Can mosaic onto any surface if you know the geometry

- See NASA's Visible Earth project for some stunning earth mosaics - http://earthobservatory.nasa.gov/Newsroom/BlueMarble/

Slit images: cyclographs

Slit images: photofinish

