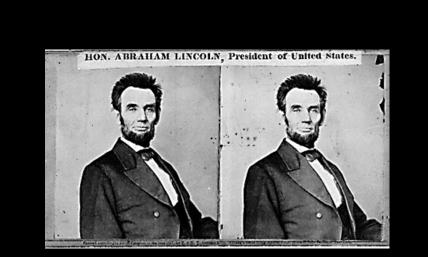

Announcements

- Project 3 code & artifact due Tuesday
- Final project proposals due noon Wed (by email)
 - One-page writeup (from project web page), specifying:
 - » Your team members
 - » Project goals. Be specific. Describe the input and output.
 - » Brief description of your approach. If you are implementing or extending a previous method, give the reference and web link to the paper.
 - » Will you be using helper code (e.g., available online) or will you implement it all yourself?
 - » Evaluation method. How will you test it? Which test cases will you use?
 - » Breakdown--what will each team-member do? Ideally, everyone should do something imaging/vision related (it's not good for one team member to focus purely on user-interface, for instance).
 - » Special equipment that will be needed. We may be able to help with cameras, tripods, etc.


Stereo

Single image stereogram, by Niklas Een

Readings

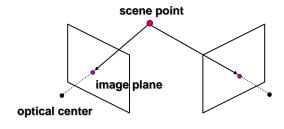
• Szeliski, Chapter 10 (through 10.5)

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

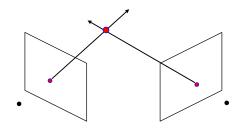
Teesta suspension bridge-Darjeeling, India

Woman getting eye exam during immigration procedure at Ellis Island, c. 1905 - 1920 , UCR Museum of Phography

Anaglyphs online


I used to maintain of list of sites, but too hard to keep up to date. Instead, see wikipedia page:

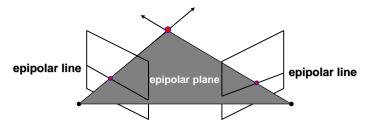
http://en.wikipedia.org/wiki/Anaglyph_image


A free pair of red-blue stereo glasses can be ordered from <u>Rainbow Symphony Inc</u> • <u>http://www.rainbowsymphony.com/freestuff.html</u>

Mark Twain at Pool Table", no date, UCR Museum of Photography

Stereo

Stereo

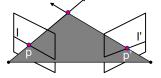

Basic Principle: Triangulation

- · Gives reconstruction as intersection of two rays
- Requires
 - camera pose (calibration)
 - point correspondence

Stereo correspondence

Determine Pixel Correspondence

· Pairs of points that correspond to same scene point



Epipolar Constraint

- Reduces correspondence problem to 1D search along *conjugate* epipolar lines
- Java demo: <u>http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html</u>

Fundamental matrix

Let p be a point in left image, p' in right image

Epipolar relation

- p maps to epipolar line l'
- p' maps to epipolar line l

Epipolar mapping described by a 3x3 matrix F

$$l' = Fp$$
$$l = p'F$$

It follows that

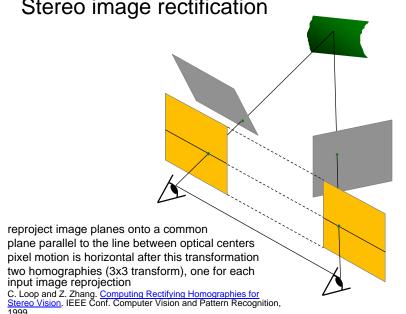
$$p'Fp = 0$$

Fundamental matrix

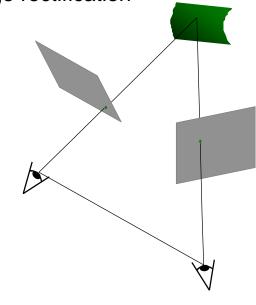
This matrix F is called

- the "Essential Matrix"
 - when image intrinsic parameters are known
- · the "Fundamental Matrix"
 - more generally (uncalibrated case)

Can solve for F from point correspondences


• Each (p, p') pair gives one linear equation in entries of F

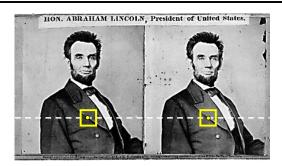
$$p'Fp = 0$$


- 8 points give enough to solve for F (8-point algorithm)
- see Marc Pollefey's notes for a nice tutorial

Stereo image rectification

•

Stereo image rectification



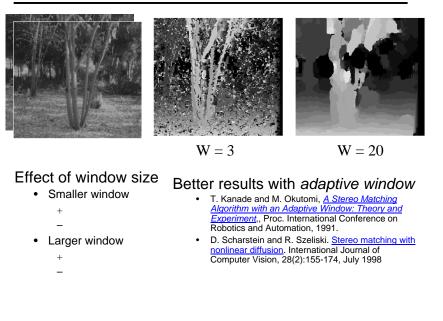
Stereo matching algorithms

Match Pixels in Conjugate Epipolar Lines

- Assume brightness constancy
- This is a tough problem
- Numerous approaches
 - A good survey and evaluation: http://www.middlebury.edu/stereo/

Your basic stereo algorithm

For each epipolar line


For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

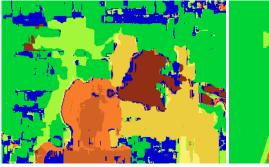
Improvement: match windows

• This should look familar...

Window size

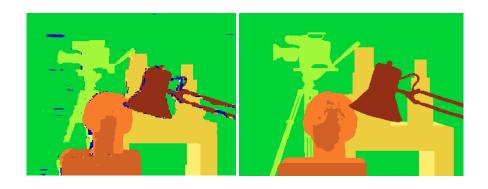
Stereo results

- Data from University of Tsukuba
- · Similar results on other images without ground truth



Scene

Ground truth


Results with window search

Window-based matching (best window size)

Ground truth

Better methods exist...

State of the art method Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.

For the latest and greatest: <u>http://www.middlebury.edu/stereo/</u>

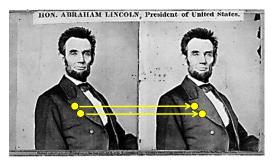
Ground truth

Stereo as energy minimization

Expressing this mathematically

- 1. Match quality
 - Want each pixel to find a good match in the other image

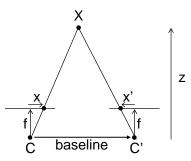
$$matchCost = \sum_{x,y} \|I(x,y) - J(x + d_{xy},y)\|$$


- 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

 $smoothnessCost = \sum_{neighbor \ pixels \ p,q} |d_p - d_q|$

We want to minimize *Energy* = *matchCost* + *smoothnessCost*

- This is a special type of energy function known as an MRF (Markov Random Field)
 - Effective and fast algorithms have been recently developed:
 - » Graph cuts, belief propagation....
 - » for more details (and code): <u>http://vision.middlebury.edu/MRF/</u>
 - » Great tutorials available online (including video of talks)


Stereo as energy minimization

What defines a good stereo correspondence?

- 1. Match quality
 - Want each pixel to find a good match in the other image
- 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

Depth from disparity

$$disparity = x - x' = \frac{baseline*f}{z}$$

Video View Interpolation

http://research.microsoft.com/users/larryz/videoviewinterpolation.htm

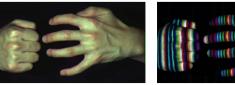
Real-time stereo

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Used for robot navigation (and other tasks)

· Several software-based real-time stereo techniques have been developed (most based on simple discrete search)

Stereo reconstruction pipeline

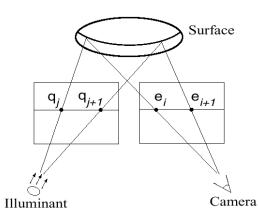

Steps

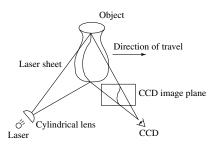
- Calibrate cameras
- · Rectify images
- · Compute disparity
- · Estimate depth

What will cause errors?

- · Camera calibration errors
- · Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- · Low-contrast image regions

Active stereo with structured light


Li Zhang's one-shot stereo


Project "structured" light patterns onto the object

• simplifies the correspondence problem

Active stereo with structured light

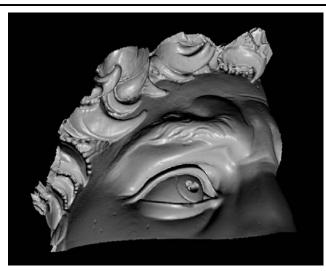
Laser scanning

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

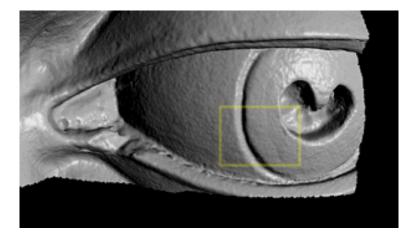
Optical triangulation

- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

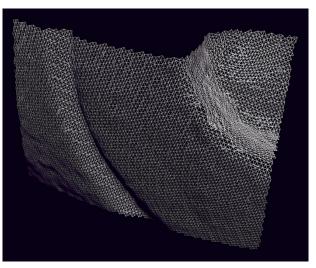
Laser scanned models


The Digital Michelangelo Project, Levoy et al.

Laser scanned models

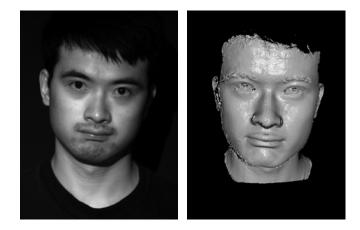

The Digital Michelangelo Project, Levoy et al.

Laser scanned models


The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.


Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Spacetime Stereo

Li Zhang, Noah Snavely, Brian Curless, Steve Seitz

http://grail.cs.washington.edu/projects/stfaces/