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Overview

Global refinement for Image stitching
Camera calibration

Pose estimation and Triangulation
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Structure from Motion

Readings

Chapter 3, Noah Snavely’s thesis

Supplementary readings:

* Hartley & Zisserman, Multiview Geometry,
Appendices 5 and 6.

* Brown & Lowe, Recognizing Panoramas, ICCV
2003

Problem: Drift
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copy of firstimage
—add another copy of first image at the end
—this gives a constraint: y, =y,
—there are a bunch of ways to solve this problem
* add displacement of (y; —y,)/(n - 1) to each image after the first
e compute a global warp: y’' =y + ax
e run a big optimization problem, incorporating this constraint

— best solution, but more complicated
— known as “bundle adjustment”




Global optimization

Global optimization
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Ambiguity in global location
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¢ Each of these solutions has the same error
e Called the gauge ambiguity
¢ Solution: fix the position of one image (e.g., make the origin of the 15t image (0,0))

Solving for rotations
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Solving for rotations
Rip11 = Rzpp2

N%! R1b11 = R2P12
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minimize ZZ Wij ||Rj+1pi,j+1 - iji,j”
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Parameterizing rotations

* How do we parameterize R and AR?
— Euler angles: bad idea
— quaternions: 4-vectors on unit sphere
— Axis-angle representation (Rodriguez Formula)

z=0% zeckR?
Q0 —Z3 1Iq
[Z]x = I3 0 —-i
—Zs I 0

R(z) = I +sinf[Z]x + (1 — cosd)[z]%
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Nonlinear Least Squares

Global alignment

Least-squares solution of

. Use the linearized update

(I+[o])Rp; - (I+[o]) Rpy =0
or

g5l @) [gid o = gi-4ie 4= Rppj;

2. Estimate least square solution over {w;}
3. lterate a few times (updating the {R;})
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Camera Calibration

. external or extrinsic (pose)

Camera calibration

Determine camera parameters from known
3D points or calibration object(s)

. internal or intrinsic parameters such as focal

length, optical center, aspect ratio:
what kind of camera?

parameters:
where is the camera?

How can we do this?
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Camera calibration — approaches

e Possible approaches:
. linear regression (least squares)
non-linear optimization

Image formation equations
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Calibration matrix

U f 0 wue &
v ~ O f Ve Yc = K X—C
1 0O 0 1 Ze
* Is this form of K good enough?
® non-square pixels (digital video)
* skew fa s wuc
. . . K=]| 0
e radial distortion 5 é Ulc

Camera matrix

e Fold intrinsic calibration matrix K and extrinsic
pose parameters (R,t) together into a
camera matrix

e M=K[R|t]
{u] {mOO mqpy1 Mmp2 MQ3

v mip ™M11 M12 M13
1 mpg mp1 Moy 1

- N

e (put 1 in lower r.h. corner for 11 d.o.f.)




Camera matrix calibration

* Directly estimate 11 unknowns in the M matrix
using known 3D points (X, Y,,Z;) and measured
feature positions (u,v))

mooX; + mo1Y; + mo2Z; + mo3
mooX; +m21Y; + mooZ; +1
m10X; + m11Y; +mi12Z; + ma3
mo0oX; + m21Y; +mooZ; + 1

U; —

v; =

Camera matrix calibration

* Linear regression:

— Bring denominator over, solve set of (over-
determined) linear equations. How?

ui(mooX; +m21Y; +mooZ; + 1) =
mooX; + mo1Y; + mo2Z; + mo3
vi(mopX; +mo1Y; +manZ; + 1) =
L oX MY 4 miaZ + mas

— Is this good enough?

Levenberg-Marquardt

* |terative non-linear least squares [Press’92]
— Linearize measurement equations

4 = fmx)+ 2L Am
om
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B = g(mx)+ LA
— Substitute into log-likelihood equation: quadratic

costfu_~ - 7
ZJZ._Q(UZ uz+—fA )2

Levenberg-Marquardt

* |terative non-linear least squares [Press’92]

— Solve for minimum 50 =0

AAm =
_ af T
Hessian: A = { 12 +]
error: b = { *27(%_%)4_ ]




Levenberg-Marquardt

What if it doesn’t converge?

— Multiply diagonal by (1 + \_), increase | until it does
— Halve the step size ®m (my favorite)

— Use line search

— Other ideas?

Uncertainty analysis: covariance © = A

Is maximum likelihood the best idea?

How to start in vicinity of global minimum?

Camera matrix calibration

e Advantages:
— very simple to formulate and solve

— can recover K [R | t] from M using QR decomposition
[Golub & VanLoan 96]

* Disadvantages:
— doesn't compute internal parameters
— can give garbage results
— more unknowns than true degrees of freedom

— need a separate camera matrix for each new view

Separate intrinsics / extrinsics

» New feature measurement equations
uy; = fK Ry, t5,%;)
v;; = g(K, Ry, t5,%;)

* Use non-linear minimization

» Standard technique in photogrammetry,
computer vision, computer graphics
— [Tsai 87] — also estimates | , (freeware @ CMU)

http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-source.html

— [Bogart 91] — View Correlation

Intrinsic/extrinsic calibration

* Advantages:
— can solve for more than one camera pose at a time
— potentially fewer degrees of freedom

e Disadvantages:
— more complex update rules

— need a good initialization (recover K [R | t] from M)




Multi-plane calibration

* Use several images of planar target held at
unknown orientations [Zhang 99]

— Compute plane homographies

o ~ HX I!

nvI([rl ro t }[ %

Uj
Uy
1
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¢ 1 plane if only f unknown
* 2 planes if (f,u,v,.) unknown
¢ 3+ planes for full K

— Code available from Zhang and OpenCV
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Rotational motion

* Use pure rotation (large scene) to estimate f
1. estimate f from pairwise homographies
2. re-estimate f from 3602 “gap”

3. optimize over all {K,R;} parameters
[Stein 95; Hartley '97; Shum & Szeliski '00; Kang & Weiss "99]

* Most accurate way to get f, short of
surveying distant points 2

Pose estimation and triangulation

Pose estimation

* Once the internal camera parameters are
known, can compute camera pose

u; = fK Ry, t5,%)
vi; = g(K,Rjt5,%x;)

— [Tsai87] [Bogart91]
* Application: superimpose 3D graphics onto
video

* How do we initialize (R,t)?

32




Pose estimation

* Previous initialization techniques:
— vanishing points [Caprile 90]
— planar pattern [Zhang 99]

* Other possibilities

— Through-the-Lens Camera Control [Gleicher92]:

differential update
— 3+ point “linear methods”:
— [DeMenthon 95][Quan 99][Ameller 00]

Pose estimation

* Use inter-point distance constraints

— [Quan 99][Ameller 00]
XY Z,)
f u,

u

Uj — Ue
wo= e |[oom =
f

— Solve set of polynomial equations in x.%°
— Recover R,t using procrustes analysis.

Triangulation

* Problem: Given some points in
correspondence across two or more images
(taken from calibrated cameras), {(u;,v;)},
compute the 3D location X

Triangulation

* Method I: intersect viewing rays in 3D,
minimize:

arg mXin Y NC; + sV = X||
J

Vl
— X is the unknown 3D point /
— C; is the optical center of camera j G

— V., is the viewing ray for pixel (u,v))
— s;is unknown distance along V,

* Advantage: geometrically intuitive




Triangulation

* Method II: solve linear equations in X
— advantage: very simple
mooX; + mo1Y; + mop2Z; + mo3
m20X; +mo1Y; +mooZ; + 1
mi10X; + m11Y; + mi12Z; +mi3
m20X; +mo1Y; +mooZ; + 1
* Method lll: non-linear minimization

U; —

v; =

— advantage: most accurate (image plane error)

Structure from Motion

Structure from motion

* Given many points in correspondence across
several images, {(u,.j,v,j)}, simultaneously
compute the 3D location x; and camera (or
motion) parameters (K, R, t))

u; = f(K,Rjt5,x;

vij = 9K R t5,x; E

e Two main variants: calibrated, diiu ulitdiividieuyu
(sometimes associated with Euclidean and
projective reconstructions)

Orthographic SFM

[Tomasi & Kanade, 1JCV 92]




Results

Look at paper figures...
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Figure 4.5: A view of the computed shape from approx-

irnately above the building (compare with figure 4.6). Figure 4.7: For a quantitative L'\GJ‘I.M.UM[L distances be-

tween the features shown in the ploture wepe measued
on the actual model, and compared with the computed
results. The comparison is shown in figure 4.3,

2

Structure from motion

u; = fKRjt5,%
vi; = g(K,Rj,t4,x;

*  How many points do we need to match?
e 2 frames:

— (R,r): 5 dof + 3n point locations & 4n

- point measurements ® n ¢ 5

k frames: 6(k—1)-1 + 3n & 2kn
e always want to use many more
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Extensions

Paraperspective

[Poelman & Kanade, PAMI 97]
Sequential Factorization
[Morita & Kanade, PAMI 97]
Factorization under perspective
[Christy & Horaud, PAMI 96]
[Sturm & Triggs, ECCV 96]
Factorization with Uncertainty
[Anandan & Irani, JCV 2002]

Bundle Adjustment

u; = f(KRjt5,%;
vi; = g(K,Rj,t4,x;

* What makes this non-linear minimization
hard?
— many more parameters: potentially slow
— poorer conditioning (high correlation)
— potentially lots of outliers
— gauge (coordinate) freedom
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Lots of parameters: sparsity

u; = fK,Rj,t5,%)
v; = g(K,Rjt;,%;)
e Only a few entries in Jacobian are non-zero
oK ’ 8R]7 th ’ 8xz~ ’

Eﬂg

e
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Robust error models

e Qutlier rejection

— use robust penalty applied
to each set of joint
measurements

> o %p (\/(Uz — ;)% + (v — 5i)2>

A= I R - -

— for extremely bad data, use random sampling
[RANSAC, Fischler & Bolles, CACM’81]

Structure from motion
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Reconstruction (side) (top)

Input: images with points in correspondence
pi;=(u;;v;))

Output
structure: 3D location x; for each point p;
* motion: camera parameters Rj, t;

Objective function: minimize reprojection error

% e LRI "
AN e PR
Pty i s

SfM objective function

* Given point x and rotation and translation R, t

x-' ‘u’ —_— f_x’I r
[y’] =Rx+t z' [ﬁ,] =P(x,R,t)
y fy v
z w =12

* Minimize sum of squared reprojection errors:

g(X RT) ZZWU |P(X“Rf’t}) [vl}]”

i=1j=

predlcted observed
image location image location




Scene reconstruction

Feature detection

I

q " ) Incremental
Pairwise
strueture

feature matching : .
\ rom motion

!
[ Correspondence |

estimation

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

* Detect features using SIFT [Lowe,
1JCV 2004]




Feature matching

* Match features between each pair
of images

Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987] to
estimate fundamental matrices between pairs

a ~ w0 D

Reconstruction

Choose twol/three views to seed the
reconstruction.

Add 3d points via triangulation.

Add cameras using pose estimation.

Bundle adjustment

Goto step 2.

Two-view structure from motion

* Simpler case: can consider motion independent of
structure

su
-ﬁx 0 x'l

-5, Y.
0 0

S
K

R.x.t.)

p-w-

A

e Let’s first consider the case where K is known
— Each image point (u;;, v;;, 1) can be multiplied by K* to
form a 3D ray
— We call this the calibrated case




Notes on two-view geometry

epipolar line
epipolar line

How can we express the epipolar constraint?

Answer: there is a 3x3 matrix E such that
pEp=0

E is called the essential matrix

Properties of the essential matrix

epipolar line
epipolar line

0 —t, ¢,

Properties of the essential matrix

epipolar line
epipolar line

pEp=0
Ep is the epipolar line associated with p
e and e' are called epipoles: Ee=0and E’e'=0

E can be solved for with 5 point matches

— see Nister, An efficient solution to the five-point relative
pose problem. PAMI 2004.

The Fundamental matrix

* |f Kis not known, then we use a related matrix
called the Fundamental matrix, F

— Called the uncalibrated case

p3Ept =0
i KTK"TEK{—TK 'p, =0
B Fpy =0

* F can be solved for linearly with eight points, or
non-linearly with six or seven points




Photo Tourism overview
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