Announcements

* Project 2 due tomorrow night

« Project 3 out Wednesday
— Jiun-Hung will take photos beginning of class

Recognition

The “Margaret Thatcher lllusion”, by Peter Thompson

Readings
e Szeliski Chapter 14

Recognition

The “Margaret Thatcher lllusion”, by Peter Thompson

Readings
* Szeliski Chapter 14

What do we mean by “object recognition™?

Next 15 slides adapted from
Li, Fergus, & Torralba’'s
excellent short course on
category and object
recognition




Verification: is that a lamp?

Detection: are there people?
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Scene and context categorization

butdoor

Applications: Computational photography
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[Face priority AE| When a bright part of the face is too bright

Applications: Assisted driving

Pedestrian and car detection 5

* Collision warning
systems with adaptive
cruise control,

* Lane departure warning
systems,

 Rear object detection
systems,

Applications: image search

| H Search images J

Places Refine your image search with visual similarity
London
Mew York Similar Images allows you to search for images using pictures rather than
Eqvpt words. Click the "Similar images” link under an image to find other images
Forbidden Cit that look like it. Try a search of your own or click on an example below.
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Challenges: viewpoint variation

Michelangelo 1475-1564

Challenges: illumination variation

Challenges: occlu

Magritte, 1957

Challenges: scale




Challenges: deformation

Xu, Beihong 1943

Challenges: background clutter

Klimt, 1913

Challenges: intra-class variation

Let’'s start simple

Today
 skin detection
» eigenfaces
« face detection with adaboost




Face detection

How to tell if a face is present?

One simple method: skin detection
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Skin pixels have a distinctive range of colors
« Corresponds to region(s) in RGB color space
— for visualization, only R and G components are shown above
Skin classifier
¢ Anpixel X = (R,G,B) is skin if it is in the skin region
¢ But how to find this region?

Skin detection
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Learn the skin region from examples

« Manually label pixels in one or more “training images” as skin or not skin

¢ Plot the training data in RGB space
— skin pixels shown in orange, non-skin pixels shown in blue

— some skin pixels may be outside the region, non-skin pixels inside. Why?

Skin classifier
¢ Given X = (R,G,B): how to determine if it is skin or not?

Skin classification techniques
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Skin classifier
¢ Given X = (R,G,B): how to determine if it is skin or not?
¢ Nearest neighbor
— find labeled pixel closest to X
— choose the label for that pixel
« Data modeling
— fit a model (curve, surface, or volume) to each class
* Probabilistic data modeling
— fit a probability model to each class




Probability

Basic probability
» Xis arandom variable
» P(X) is the probability that X achieves a certain value
P(X) called a PDF

-probability distribution/density function
-a 2D PDF is a surface, 3D PDF is a volume

.« 0<P(X)<1

. /OO P(X)dX =1 o Y P(X)=1

continuous X discrete X

» Conditional probability: P(X]Y)
— probability of X given that we already know Y

Probabilistic skin classification

P(skin|R)
I'd

P(~ skin|R)

T T
Ri Ry R
Now we can model uncertainty
« Each pixel has a probability of being skin or not skin
- P(~skin|R) =1 — P(skin|R)

Skin classifier
¢ Given X = (R,G,B): how to determine if it is skin or not?
¢ Choose interpretation of highest probability
— set X to be a skin pixel ifand only if R; < X < Rp

Where do we get P(skin|R) and P(~ skin|R) ?

Learning conditional PDF’s

P(R|skin) = #skin pixels with color R
#£skin pixels

We can calculate P(R | skin) from a set of training images
¢ Itis simply a histogram over the pixels in the training images
— each bin R; contains the proportion of skin pixels with color R;

This doesn’t work as well in higher-dimensional spaces. Why not?

Approach: fit parametric PDF functions
e common choice is rotated Gaussian
— center c = X
— covariance Y_(X — X)(X — X)7
X
» orientation, size defined by eigenvecs, eigenvals

Learning conditional PDF’s

P(R|skin) = #skin pixels with color R
#£skin pixels

We can calculate P(R | skin) from a set of training images
¢ Itis simply a histogram over the pixels in the training images
— each bin R; contains the proportion of skin pixels with color R;
But this isn’t quite what we want
¢« Why not? How to determine if a pixel is skin?
¢ We want P(skin | R) not P(R | skin)
¢ How can we get it?




Bayes rule

P(X|Y) =

In terms of our pro

P(skin|R) =

what we

blem:

want

(posterior)

The prior: P(skin)

P(Y|X)P(X)
P(Y)

what we measure  domain knowledge
(likelihood) prior)
P(R|skin) P(skin)
P(R)
\

normalization term
P(R) = P(R|skin)P(skin)4+P(R| ~ skin) P(~ skin)

¢ Could use domain knowledge
— P(skin) may be larger if we know the image contains a person
— for a portrait, P(skin) may be higher for pixels in the center

¢ Could learn the prior from the training set. How?
— P(skin) may be proportion of skin pixels in training set

Bayesian estimation

P(R|skin)
v

1A
P(R| ~ skin) P(R| ~ skin

T T T
Ri Ry R Ry R, R

likelihood posterior (unnormalized)

; ; ; = minimize probability of misclassification
Bayesian estimation proablly o

« Goalis to choose the label (skin or ~skin) that maximizes the posterior
— this is called Maximum A Posteriori (MAP) estimation
¢ Suppose the prior is uniform: P(skin) = P(~skin) = 0.5
— inthis case P(skin|R) = cP(R|skin), P(~ skin|R) = cP(R| ~ skin)
— maximizing the posterior is equivalent to maximizing the likelihood
» P(skin|R) > P(~ skin|R) ifand onlyif P(R|skin) > P(R| ~ skin)
— this is called Maximum Likelihood (ML) estimation

Skin detection results
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General classification

This same procedure applies in more general circumstances
* More than two classes "
* More than one dimension

N

Example: face detection
¢ Here, X is an image region
— dimension = # pixels
— each face can be thought
of as a point in a high
dimensional space
H. Schneiderman, T. Kanade. "A Statistical Method for 3D
Object Detection Applied to Faces and Cars". IEEE Conference

on Computer Vision and Pattern Recognition (CVPR 2000)
http://www-2.cs.cmu. cmu.edt VPROO.pdf

P(skin) = 0.75
P(~skin) = 0.25




Linear subspaces

G convert x into v,, v, coordinates
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Classification can be expensive

¢ Must either search (e.g., nearest neighbors) or store large PDF's
Suppose the data points are arranged as above

« ldea—fit a line, classifier measures distance to line

Dimensionality reduction
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Dimensionality reduction
* We can represent the orange points with only their v, coordinates
— since v, coordinates are all essentially 0
¢ This makes it much cheaper to store and compare points
« A bigger deal for higher dimensional problems

Linear subspaces

G Consider the variation along direction v
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var(v) = Y [[(x-%)T v
= ZVT(X - (x-%Tv
= T Z(x—i)(x—i)T v
= vTAv where A = Z(x —D(x-%T

Solution: v, is eigenvector of A with largest eigenvalue
Vv, is eigenvector of A with smallest eigenvalue

Principal component analysis

Suppose each data point is N-dimensional
¢ Same procedure applies:

var(v) = Z||(X—Y)T<v||
= vTAv where A=Y (x-%)(x-x)7T

* The eigenvectors of A define a new coordinate system

— eigenvector with largest eigenvalue captures the most variation among
training vectors x

— eigenvector with smallest eigenvalue has least variation
* We can compress the data by only using the top few eigenvectors

— corresponds to choosing a “linear subspace”
» represent points on a line, plane, or “hyper-plane”
— these eigenvectors are known as the principal components




The space of faces
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An image is a point in a high dimensional space
¢« An N x M image is a point in R\M
* We can define vectors in this space as we did in the 2D case

Dimensionality reduction

The set of faces is a “subspace” of the set of images
¢ Suppose it is K dimensional
* We can find the best subspace using PCA
« This is like fitting a “hyper-plane” to the set of faces
— spanned by vectors vy, Vs, ..., Vg
- anyface x & X+ a1vy + axve + ... + apvi

Eigenfaces

PCA extracts the eigenvectors of A
* Gives a set of vectors v,, V,, Vg, ...

¢ Each one of these vectors is a direction in face space
— what do these look like?

Projecting onto the eigenfaces

The eigenfaces v, ..., v span the space of faces
« Aface is converted to eigenface coordinates by

x> ((x—=%X) vy, (x—X) va,..., (XxX—X)- vKg)

a as ar

XXX+ a1vy+axve + ...+ agVKg \

alv ap>Vg a3V3 a4Vy4 asVyg agVv a7Vry agv
1Vl 2V2 A3V3 G4V4 G5V5 U6VE T7V7T agvsy




Recognition with eigenfaces

Algorithm

1. Process the image database (set of images with labels)
¢ Run PCA—compute eigenfaces
* Calculate the K coefficients for each image
2. Given a new image (to be recognized) x, calculate K coefficients

X — (CLl,GQ,...,CL[{)

3. Detectifxis aface

lx — (X+a1vy + aove + ... + agvik)| < threshold

4, Ifitis aface, whois it?

* Find closest labeled face in database
nearest-neighbor in K-dimensional space

Choosing the dimension K

eigenvalues kg

i= K NM
How many eigenfaces to use?

Look at the decay of the eigenvalues

+ the eigenvalue tells you the amount of variance “in the
direction” of that eigenface

* ignore eigenfaces with low variance

Issues: metrics

What's the best way to compare images?
» need to define appropriate features
» depends on goal of recognition task
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exact matching classification/detection

complex features work well simple features work well
(SIFT, MOPS, etc.) (Viola/Jones, etc.)

Metrics

Lots more feature types that we haven’t mentioned
* moments, statistics
— metrics: Earth mover’s distance, ...
» edges, curves
— metrics: Hausdorff, shape context, ...
» 3D: surfaces, spin images
— metrics: chamfer (ICP)




Issues: feature selection

If you have a training set of images:
AdaBoost, etc.

If all you have is one image:
non-maximum suppression, etc.

Issues: data modeling

Generative methods
» model the “shape” of each class
— histograms, PCA, mixtures of Gaussians
— graphical models (HMM's, belief networks, etc.)

Discriminative methods

» model boundaries between classes
— perceptrons, neural networks
— support vector machines (SVM's)

Generative vs. Discriminative
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Generative Approach
model individual classes, priors

Discriminative Approach
model posterior directly

from Chris Bishop

X

Issues: dimensionality

What if your space isn't flat?
* PCA may not help

Nonlinear methods
LLE, MDS, etc.




Issues: speed

Case study: Viola Jones face detector
Next few slides adapted Grauman & Liebe’s tutorial

http://www.vision.ee.ethz.ch/~bleibe/teaching/tutorial-aaai08/

Also see Paul Viola’s talk (video)
http://www.cs.washington.edu/education/courses/577/04sp/contents.html#DM
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Feature extraction

“Rectangular” filters
l m | i | Feature output is difference

—
between adjacent regions
— —
li _— ! 3
¢

Efficiently computable
with integral image: any
sum can be computed

in constant time

Value at (x,y) is
sum of pixels
above and to the
left of (x,y)
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Avoid scaling images 2>
scale features directly
for same cost

Integral image D=1+4-(2+3)
=A+{A+B+C+D—(A+C+ A+ B)

=0

Viola & Jones, CVPR 2001 50

K. Grauman, B. Leibe
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Large library of filters

Considering all
possible filter
parameters:
position, scale,

e
|| o
and type:
180,000+

possible features

I] associated with
each 24 x 24
- window

—

il

Use AdaBoost both to select the informative
features and to form the classifier

Viola & Jones, CVPR 2001

K. Grauman, B. Leibe

Visual Object Recognition Tutqtia

AdaBoost for feature+classifier selection

* Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

t 1o, Resulting weak classifier:
Rl
hx) { +1if f(x)> 6,

Lo -1 otherwise
o | q—.—H—.—Q—Q—%
: 1 For next round, reweight the
! t(X)—>

examples according to errors,
choose another filter/threshold
combo.

Outputs of a possible
rectangle feature on
faces and non-faces.

Viola & Jones, CVPR 2001

K. Grauman, B. Leibe




AdaBoost: Intuition

AdaBoost: Intuition

K. Grauman, B. Leibe
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Visual Object Recognition Tutorial

Cascading classifiers for detection

For efficiency, apply less
accurate but faster classifiers
first to immediately discard
windows that clearly appear to
be negative; e.qg., oYoYoYoLNC™

» Filter for promising regions with an
initial inexpensive classifier

Aaject Sub-window

» Build a chain of classifiers, choosing
cheap ones with low false negative
rates early in the chain

Fleuret & Geman, [JCV 2001
Rowley et al., PAMI 1998

Viola & Jones, CVPR 2001 . ) ) 57
K. Grauman, B. Leibe Figure from Viola & Jones CVPR 2001
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Viola-Jones Face Detector: Summary

Train cascade of
classifiers with
AdaBoost

~

ol | @1 | -

= =

. . 7 Selected features,
Non-faces thresholds, and weights

* Train with 5K positives, 350M negatives
e Real-time detector using 38 layer cascade

e 6061 features in final layer

e [Implementation available in OpenCV:
http://www.intel.com/technology/computing/opencv/]

K. Grauman;, B. Leibe
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Viola-Jones Face Detector: Results

First two features
selected

. 59
K. Grauman, B. Leibe

Visual Object Recognition Tutorial

Viola-Jones Face Detector: Results

K. Grauman, B. Leibe




Visual Object Recognition Tutorial

Viola-Jones Face Detector: Results

Viola-Jones Face Detector: Results

K. Grauman, B. Leibe

Visual Object Recognition Tutorial

K. Grauman, B. Leibe
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Detecting profile faces?

Detecting profile faces requires training separate
detector with profile examples.

K. Grauman, B. Leibe

Viola-Jones Face Detector: Results

Visual Object Recognition Tutorial
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K. Grauman, B. Leibe




