Announcements

- Project 3 questions
- Final project out today

Projective geometry

Readings

- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1 - 23.5, 23.10)
 - available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Projective geometry—what's it good for?

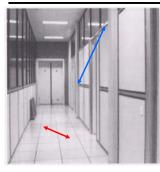
Uses of projective geometry

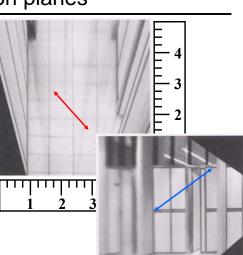
- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Focus of expansion
- Camera pose estimation, match move
- Object recognition

Applications of projective geometry

Reconstructions by Criminisi et al.

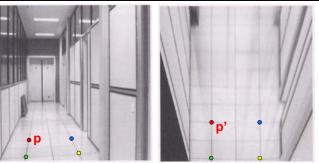
Measurements on planes





Approach: unwarp then measure What kind of warp is this?

Image rectification



To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of ${\bf H}$
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for $\ensuremath{\text{H}}\xspace?$

work out on board

Solving for homographies

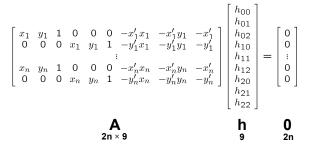
$\left[\begin{array}{c} x_i'\\y_i'\\1\end{array}\right]\cong$	$\begin{bmatrix} h_{00} \\ h_{10} \\ h_{20} \end{bmatrix}$	$h_{01} \\ h_{11} \\ h_{21}$			$\begin{array}{c} x_i \\ y_i \\ 1 \end{array}$	
---	--	------------------------------	--	--	--	--

 $\begin{aligned} x'_i &= \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \\ y'_i &= \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}} \end{aligned}$

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\ 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving for homographies



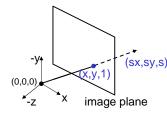
Defines a least squares problem: minimize $\|Ah - 0\|^2$

- Since \boldsymbol{h} is only defined up to scale, solve for unit vector $\boldsymbol{\hat{h}}$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

The projective plane

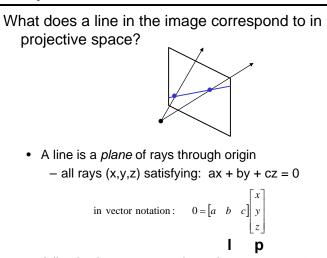
Why do we need homogeneous coordinates?

- represent points at infinity, homographies, perspective projection, multi-view relationships
- What is the geometric intuition?
 - a point in the image is a ray in projective space



Each *point* (x,y) on the plane is represented by a *ray* (sx,sy,s)
 – all points on the ray are equivalent: (x, y, 1) ≅ (sx, sy, s)

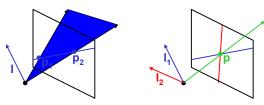
Projective lines



• A line is also represented as a homogeneous 3-vector I

Point and line duality

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) **p** on the line: **I p**=0



What is the line I spanned by rays p_1 and p_2 ?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I is the plane normal

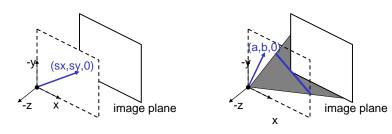
What is the intersection of two lines I_1 and I_2 ?

• **p** is \perp to I_1 and $I_2 \implies p = I_1 \times I_2$

Points and lines are dual in projective space

• given any formula, can switch the meanings of points and lines to get another formula

Ideal points and lines



Ideal point ("point at infinity")

- $p \cong (x, y, 0)$ parallel to image plane
- · It has infinite image coordinates

Ideal line

- $I \cong (a, b, 0)$ parallel to image plane
- · Corresponds to a line in the image (finite coordinates)
 - goes through image origin (principle point)

Homographies of points and lines

Computed by 3x3 matrix multiplication

- To transform a point: **p'** = **Hp**
- To transform a line: $\ensuremath{ \textbf{lp}=0 \rightarrow \textbf{l'p'=0}}$
 - $0 = \mathbf{I}\mathbf{p} = \mathbf{I}\mathbf{H}^{-1}\mathbf{H}\mathbf{p} = \mathbf{I}\mathbf{H}^{-1}\mathbf{p}' \Rightarrow \mathbf{I}' = \mathbf{I}\mathbf{H}^{-1}$
 - lines are transformed by postmultiplication of $H^{\mbox{-}1}$

3D projective geometry

These concepts generalize naturally to 3D

- Homogeneous coordinates
 - Projective 3D points have four coords: $\mathbf{P} = (X, Y, Z, W)$
- Duality
 - A plane ${\boldsymbol N}$ is also represented by a 4-vector
 - Points and planes are dual in 3D: N P=0
- Projective transformations
 - Represented by 4x4 matrices T: P' = TP, N' = N T⁻¹

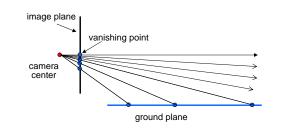
3D to 2D: "perspective" projection

Matrix Projection:

What is not preserved under perspective projection?

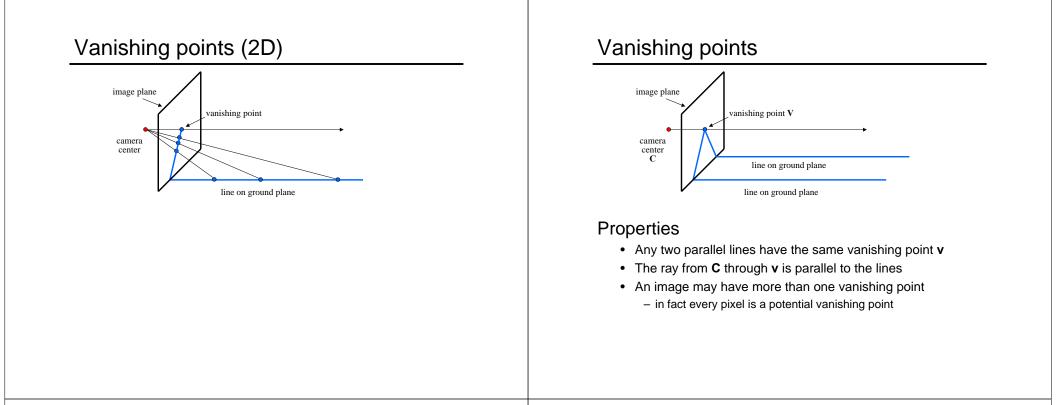
What IS preserved?

Vanishing points

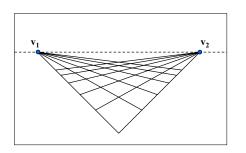


Vanishing point

• projection of a point at infinity



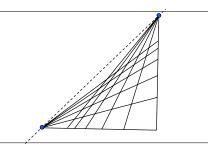
Vanishing lines



Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the *horizon line* – also called *vanishing line*
- Note that different planes define different vanishing lines

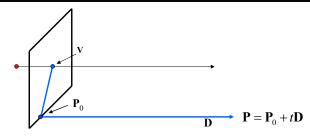
Vanishing lines



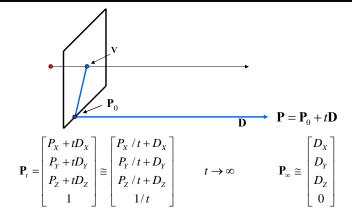
Multiple Vanishing Points

- · Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the *horizon line* – also called *vanishing line*
- Note that different planes define different vanishing lines

Computing vanishing points



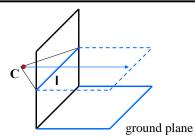
Computing vanishing points



Properties $v = \Pi P_{\infty}$

- \mathbf{P}_{∞} is a point at *infinity*, **v** is its projection
- They depend only on line direction
- Parallel lines P₀ + tD, P₁ + tD intersect at P_∞

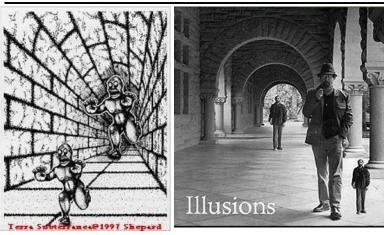
Computing vanishing lines



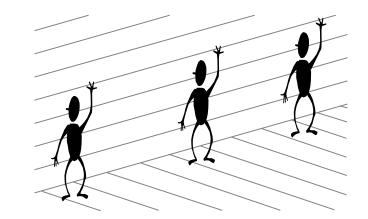
Properties

- I is intersection of horizontal plane through C with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as C project to I
 - points higher than C project above I
- · Provides way of comparing height of objects in the scene

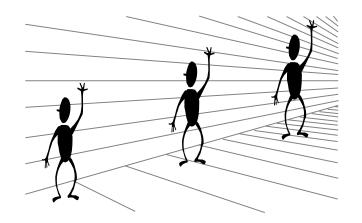
Fun with vanishing points



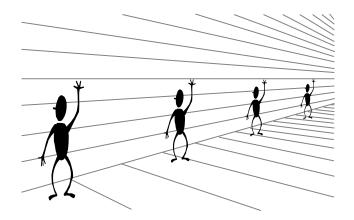
Perspective cues



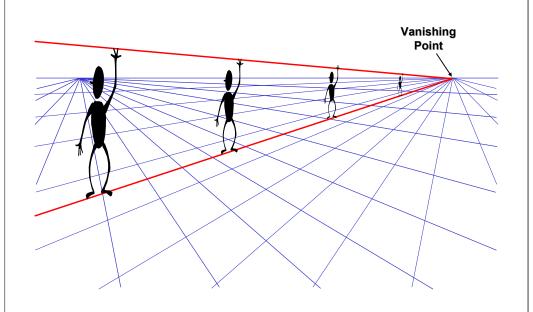
Perspective cues



Perspective cues

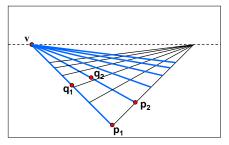


Comparing heights



5.4 Camera height

Computing vanishing points (from lines)



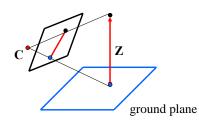
Intersect p_1q_1 with p_2q_2

$v = (p_1 \times q_1) \times (p_2 \times q_2)$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by <u>Bob Collins</u> for one good way of doing this: - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler



Compute Z from image measurements

· Need more than vanishing points to do this

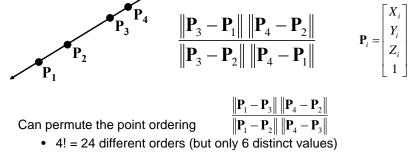
Measuring height

The cross ratio

A Projective Invariant

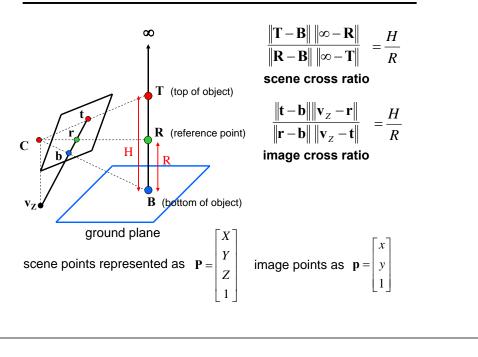
• Something that does not change under projective transformations (including perspective projection)

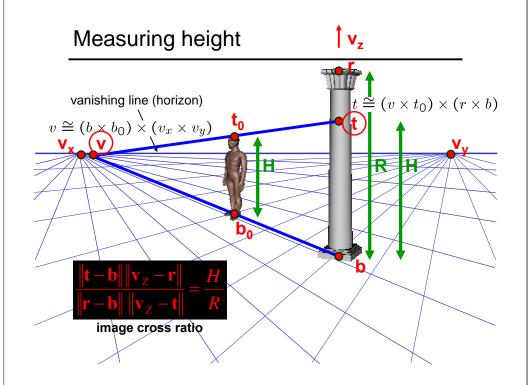
The cross-ratio of 4 collinear points

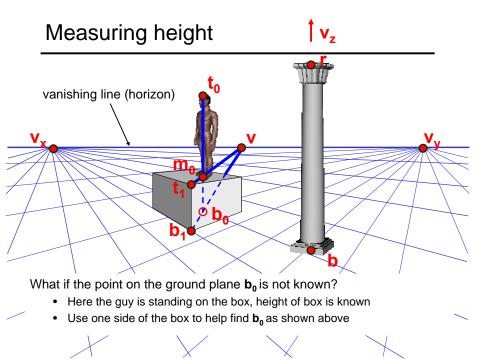


This is the fundamental invariant of projective geometry

Measuring height







Computing (X,Y,Z) coordinates

Okay, we know how to compute height (Z coords)

• how can we compute X, Y?

3D Modeling from a photograph

Camera calibration

Goal: estimate the camera parameters

• Version 1: solve for projection matrix

$$\mathbf{X} = \begin{bmatrix} wx \\ wy \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \mathbf{\Pi} \mathbf{X}$$

- Version 2: solve for camera parameters separately
 - intrinsics (focal length, principle point, pixel size)
 - extrinsics (rotation angles, translation)

radial distortion

Vanishing points and projection matrix

- $\boldsymbol{\pi}_1 = \boldsymbol{\Pi} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T = \boldsymbol{v}_x$ (X vanishing point)
- similarly, $\boldsymbol{\pi}_2 = \boldsymbol{v}_Y, \ \boldsymbol{\pi}_3 = \boldsymbol{v}_Z$
- $\boldsymbol{\pi}_4 = \boldsymbol{\Pi} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ = projection of world origin

 $\boldsymbol{\Pi} = \begin{bmatrix} \mathbf{v}_X & \mathbf{v}_Y & \mathbf{v}_Z & \mathbf{0} \end{bmatrix}$

Not So Fast! We only know v's up to a scale factor

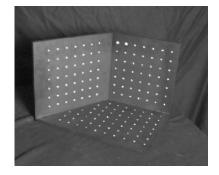
$$\mathbf{\Pi} = \begin{bmatrix} a \, \mathbf{v}_X & b \mathbf{v}_Y & c \mathbf{v}_Z & \mathbf{0} \end{bmatrix}$$

Can fully specify by providing 3 reference points

Calibration using a reference object

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image



Issues

- must know geometry very accurately
- must know 3D->2D correspondence

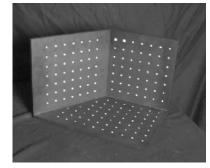
Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

Estimating the projection matrix

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image



$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$
--	--

Direct linear calibration

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$
$$u_i = \frac{m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}}$$
$$v_i = \frac{m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}}$$

 $u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$ $v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$



Direct linear calibration

												$[m_{00}]$		
												m_{01}		
-											-	m ₀₂		_
X_1	Y_1	Z_1	1	0	0	0	0	$-u_{1}X_{1}$	$-u_{1}Y_{1}$	$-u_{1}Z_{1}$	$-u_1$	m ₀₃		l
0	0	0	0	X_1	Y_1	Z_1	1	$-v_1X_1$	$-v_{1}Y_{1}$	$-v_{1}Z_{1}$	$-v_1$	m_{10}		
						:						$m_{\perp \perp}$	=	l
X_n		Z_n		0	0	0	0	$-u_n X_n$	$-u_n Y_n$	$-u_n Z_n$	$-u_n$	m_{12}		l
0	0	0	0	X_n	Y_n	Z_n	1	$-v_n X_n$	$-v_n Y_n$	$-v_n Z_n$	$-v_n$	m_{13}		L
-											-	m ₂₀		
												m ₂₁		
												_ m ₂₂ _		

Can solve for m_{ii} by linear least squares

· use eigenvector trick that we used for homographies

Direct linear calibration

Advantage:

• Very simple to formulate and solve

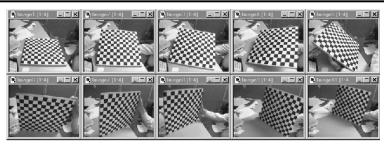
Disadvantages:

- · Doesn't tell you the camera parameters
- Doesn't model radial distortion
- Hard to impose constraints (e.g., known focal length)
- Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
 E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques
 - e.g., variants of Newton's method (e.g., Levenberg Marquart)

Alternative: multi-plane calibration



Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: <u>http://www.intel.com/research/mrl/research/opencv/</u>
 - Matlab version by Jean-Yves Bouget: <u>http://www.vision.caltech.edu/bougueti/calib_doc/index.html</u>
 - Zhengyou Zhang's web site: <u>http://research.microsoft.com/~zhang/Calib/</u>

Some Related Techniques

Image-Based Modeling and Photo Editing

- Mok et al., SIGGRAPH 2001
- http://graphics.csail.mit.edu/ibedit/

Single View Modeling of Free-Form Scenes

- Zhang et al., CVPR 2001
- <u>http://grail.cs.washington.edu/projects/svm/</u>

Tour Into The Picture

- Anjyo et al., SIGGRAPH 1997
- http://koigakubo.hitachi.co.jp/little/DL TipE.html