Announcements

* Project 3 questions
« Final project out today

Projective geometry

T

Ames Room

Readings

Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix:
Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992,
(read 23.1-23.5,23.10)

— available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Projective geometry—what’s it good for?

Uses of projective geometry
« Drawing
¢ Measurements
« Mathematics for projection
» Undistorting images
» Focus of expansion
» Camera pose estimation, match move
* Object recognition

Applications of projective geometry

Vermeer's Music Lesson

Reconstructions by Criminisi et al.




Measurements on planes

Approach: unwarp then measure
What kind of warp is this?

Image rectification

To unwarp (rectify) an image
 solve for homography H given p and p’
» solve equations of the form: wp’ = Hp
— linear in unknowns: w and coefficients of H
— His defined up to an arbitrary scale factor
— how many points are necessary to solve for H?
work out on board

Solving for homographies

N hoo ho1 hoz T
= | k1o h11 h12 Yi

hoo h21 h22 1

ST

e R

r _ _hooxi + horyi + hoz

hoow; + h21yi + ha2

_ _hio®i + haayi + M2
hoow; 4+ h21yi + ha2

2 (hoow; + ho1yi + ho2) = hooz; + ho1yi + hoz
yi(hoom; + ho1yi + hoo) = hioz; + h11yi + hio

oo |
h01
hoz
z ¥y, 1 0 0 0 —alw; —aly; —a Zi(l) _|0
0 00 @ v 1 —ywi ~Yyi ~¥i]|p

h2o
h21
[ 22 |

Solving for homographies
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Defines a least squares problem: minimize |[Ah — 02
+ Since h is only defined up to scale, solve for unit vector h
« Solution: h = eigenvector of ATA with smallest eigenvalue
» Works with 4 or more points




The projective plane

Why do we need homogeneous coordinates?

* represent points at infinity, homographies, perspective
projection, multi-view relationships

What is the geometric intuition?
« apoint in the image is a ray in projective space

P4

‘(sx,sy,s)

X image plane

» Each point (x,y) on the plane is represented by a ray (sx,sy,s)
— all points on the ray are equivalent: (x,y, 1) = (sx, sy, s)

Projective lines

What does a line in the image correspond to in
projective space?

* Aline is a plane of rays through origin
— all rays (x,y,z) satisfying: ax + by +cz=0

X
in vector notation:  0=[a b c]{y]
z

I p

» Aline is also represented as a homogeneous 3-vector |

Point and line duality

» Aline lis a homogeneous 3-vector
e |tis L to every point (ray) p on the line: | p=0

What is the line | spanned by rays p, and p, ?
elisltopsandp, = I=p,;xp,
* lis the plane normal

What is the intersection of two lines I, and I, ?
e pisltoljandl, = p=1,xl,

Points and lines are dual in projective space

 given any formula, can switch the meanings of points and
lines to get another formula

Ideal points and lines

1
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image plane ~. Iimage plane

Ideal point (“point at infinity”)
e p=(xY, 0)— parallel to image plane
« It has infinite image coordinates

Ideal line
* |=(a, b, 0) — parallel to image plane

» Corresponds to a line in the image (finite coordinates)
— goes through image origin (principle point)




Homographies of points and lines

3D projective geometry

Computed by 3x3 matrix multiplication
» To transform a point: p’ = Hp

e To transform a line: Ip=0 — I'p’=0
—0=Ip=IH'Hp =IH'p’ = I' = IH"
— lines are transformed by postmultiplication of H-1

These concepts generalize naturally to 3D
» Homogeneous coordinates
— Projective 3D points have four coords: P = (X,Y,Z,W)
* Duality
— A plane N is also represented by a 4-vector
— Points and planes are dual in 3D: N P=0
» Projective transformations
— Represented by 4x4 matrices T: PP=TP, N =NT-

3D to 2D: “perspective” projection

Vanishing points
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Matrix Projection: p_wﬂ{

N <X

What is not preserved under perspective projection?

What IS preserved?

image plane

vanishing point

camera
center

ground plane

Vanishing point
* projection of a point at infinity




Vanishing points (2D)

image plane
~

vanishing point

camera
center

line on ground plane

Vanishing points

image plane
~
vanishing point V
camera
center
C -
line on ground plane
line on ground plane
Properties

» Any two parallel lines have the same vanishing point v
» The ray from C through v is parallel to the lines
» Animage may have more than one vanishing point

— in fact every pixel is a potential vanishing point

Vanishing lines

Multiple Vanishing Points
» Any set of parallel lines on the plane define a vanishing point
» The union of all of these vanishing points is the horizon line
— also called vanishing line
» Note that different planes define different vanishing lines

Vanishing lines

Multiple Vanishing Points
» Any set of parallel lines on the plane define a vanishing point
» The union of all of these vanishing points is the horizon line
— also called vanishing line
» Note that different planes define different vanishing lines




Computing vanishing points

P=P,+tD

Computing vanishing points

v
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Properties v=IIP,
« P_is a point at infinity, v is its projection
¢ They depend only on line direction
« Parallel lines P, + tD, P, + tD intersect at P,

P=P,+tD
Dy

P, = D,
DZ
0

Computing vanishing lines

/i

ground plane

N

Properties

« lis intersection of horizontal plane through C with image plane
« Compute I from two sets of parallel lines on ground plane

¢ All points at same height as C project to |
— points higher than C project above |

¢ Provides way of comparing height of objects in the scene




Fun with vanishing points
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Comparing heights
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Measuring height
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Computing vanishing points (from lines)

P4

Intersect p,q, with p,q,
v=1(p1 %X q1) x (P2 X q2)

Least squares version
« Better to use more than two lines and compute the “closest” point of
intersection
¢ See notes by Bob Collins for one good way of doing this:
— http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

C%
ground plane

Compute Z from image measurements
» Need more than vanishing points to do this




The cross ratio Measuring height

A Projective Invariant
* Something that does not change under projective transformations @© ”T _B" ”OO — R” _ H
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What if the point on the ground plane b, is not known?
« Here the guy is standing on the box, height of box is known
— * Use one side of the box to help find b, as shown above

A YN RN

<N

image cross rat




Computing (X,Y,Z) coordinates

Okay, we know how to compute height (Z coords)
* how can we compute X, Y?

3D Modeling from a photograph
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Camera calibration

Goal: estimate the camera parameters
* Version 1: solve for projection matrix
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¢ Version 2: solve for camera parameters separately
— intrinsics (focal length, principle point, pixel size)
— extrinsics (rotation angles, translation)
— radial distortion

X % %

Vanishing points and projection matrix
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e m =M 0 0 0] =v, (X vanishing point)

e similarly, n, =v,, n,=V,

e m,=I[0 0 0 1]" =projection of world origin

:[Vx Vy Vg O]
Not So Fast! We only know v’s up to a scale factor
M=[av, bv, cv, o]

 Can fully specify by providing 3 reference points




Calibration using a reference object

Place a known object in the scene
« identify correspondence between image and scene
* compute mapping from scene to image

Issues

» must know geometry very accurately
¢ must know 3D->2D correspondence

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs
http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

Estimating the projection matrix

Place a known object in the scene
« identify correspondence between image and scene
¢ compute mapping from scene to image
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Direct linear calibration
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Direct linear calibration
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Can solve for m; by linear least squares
* use eigenvector trick that we used for homographies

Direct linear calibration

Advantage:

» Very simple to formulate and solve

Disadvantages:
» Doesn't tell you the camera parameters
» Doesn’'t model radial distortion
» Hard to impose constraints (e.g., known focal length)
» Doesn’t minimize the right error function

For these reasons, nonlinear methods are preferred
« Define error function E between projected 3D points and image positions
— E is nonlinear function of intrinsics, extrinsics, radial distortion
¢ Minimize E using nonlinear optimization techniques
— e.g., variants of Newton’s method (e.g., Levenberg Marquart)

Alternative: multi-plane calibration
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Some Related Techniques

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
e Only requires a plane
« Don't have to know positions/orientations
» Good code available online!

— Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/

— Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

— Zhengyou Zhang's web site: http:/research.microsoft.com/~zhang/Calib/

Image-Based Modeling and Photo Editing
* Mok et al.,, SIGGRAPH 2001
 http://graphics.csail.mit.edu/ibedit/

Single View Modeling of Free-Form Scenes
» Zhang et al., CVPR 2001
* http://grail.cs.washington.edu/projects/svm/

Tour Into The Picture
» Anjyo et al., SIGGRAPH 1997
» http://koigakubo.hitachi.co.jp/little/DL_TipE.html




