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Image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm
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Image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm
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Reading

Szeliski, Chapter 3.1-3.2 
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What is an image?
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Images as functions

We can think of an image as a function, f, from R2 to R:

f( x, y ) gives the intensity at position ( x, y ) 
Realistically, we expect the image only to be 
defined over a rectangle, with a finite range:
• f: [a,b]x[c,d] [0,1]

A color image is just three functions pasted together.  
We can write this as a “vector-valued” function: 
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Images as functions
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What is a digital image?

We usually work with digital (discrete) images:

Sample the 2D space on a regular grid
Quantize each sample (round to nearest 
integer)

If our samples are Δ apart, we can write this as:

f[i ,j] = Quantize{ f(i Δ, j Δ) }

The image can now be represented as a matrix of 
integer values

62 79 23 119 120 105 4 0

10 10 9 62 12 78 34 0

10 58 197 46 46 0 0 48

176 135 5 188 191 68 0 49

2 1 1 29 26 37 0 77

0 89 144 147 187 102 62 208

255 252 0 166 123 62 0 31

166 63 127 17 1 0 99 30
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Filtering noise

How can we “smooth” away noise in an image?
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Mean filtering
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Mean filtering
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Cross-correlation filtering

Let’s write this down as an equation.  Assume the 
averaging window is (2k+1)x(2k+1):

We can generalize this idea by allowing different 
weights for different neighboring pixels:

This is called a cross-correlation operation and 
written:  

H is called the “filter,” “kernel,” or “mask.”

The above allows negative filter indices.  When 
you implement need to use:  H[u+k,v+k] 
instead of H[u,v]
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Mean kernel

What’s the kernel for a 3x3 mean filter?
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Mean vs. Gaussian filtering
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Gaussian filtering

A Gaussian kernel gives less weight to pixels 
further from the center of the window

This kernel is an approximation of a Gaussian 
function:

What happens if you increase σ ?
Photoshop demo
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Image gradient 

How can we differentiate a digital image F[x,y]?

Option 1:  reconstruct a continuous image, f,
then take gradient
Option 2:  take discrete derivative (finite 
difference)

How would you implement this as a cross-correlation?
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Image gradient

It points in the direction of most rapid change in intensity

The gradient direction is given by:

how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude
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Convolution

A convolution operation is a cross-correlation 
where the filter is flipped both horizontally and 
vertically before being applied to the image:

It is written:  

Suppose H is a Gaussian or mean kernel.  How 
does convolution differ from cross-correlation?

Suppose F is an impulse function (previous slide)  
What will G look like?
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Continuous Filters

We can also apply filters to continuous images.

In the case of cross correlation:

In the case of convolution:

Note that the image and filter are infinite.
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More on filters…

Cross-correlation/convolution is useful for, e.g.,

Blurring
Sharpening
Edge Detection
Interpolation

Convolution has a number of nice properties

Commutative, associative 
Convolution corresponds to product in the 
Fourier domain

More sophisticated filtering techniques can often 
yield superior results for these and other tasks:

Polynomial (e.g., bicubic) filters
Steerable filters
Median filters
Bilateral Filters
…

(see text, web for more details on these)


