Image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

1

3

Image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

2

4

Reading

Szeliski, Chapter 3.1-3.2

What is an image?

Images as functions

We can think of an **image** as a function, f, from R^2 to R:

- *f*(*x*, *y*) gives the **intensity** at position (*x*, *y*)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - $f: [a,b] \mathbf{x}[c,d] \rightarrow [0,1]$

A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

5

Images as functions

What is a digital image?

We usually work with digital (discrete) images:

- Sample the 2D space on a regular grid
- **Quantize** each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:

f[i, j] =Quantize{ $f(i \Delta, j \Delta)$ }

.

The image can now be represented as a matrix of integer values

	J	→							
i	62	79	23	119	120	105	4	0	
	10	10	9	62	12	78	34	0	
•	10	58	197	46	46	0	0	48	
	176	135	5	188	191	68	0	49	
	2	1	1	29	26	37	0	77	
	0	89	144	147	187	102	62	208	
	255	252	0	166	123	62	0	31	
	166	63	127	17	1	0	99	30	

7

Filtering noise

How can we "smooth" away noise in an image?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	100	130	110	120	110	0	0
0	0	0	110	90	100	90	100	0	0
0	0	0	130	100	90	130	110	0	0
0	0	0	120	100	130	110	120	0	0
0	0	0	90	110	80	120	100	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

8

Mean filtering

F[x]

	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
F[x, y]	0	0	0	90	90	90	90	90	0	0
- [~,9]	0	0	0	90	0	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	90	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	—									
		0	10	20	30	30	30	20	10	
		0	20	40	60	60	60	40	20	
		0	30	60	90	90	90	60	30	
G[x, y]		0	30	50	80	80	90	60	30	
- L~, 9]		0	30	50	00	80	90	60	30	
		-	30	50	00	00			00	
		0	20	30	80 50	50	60	40	20	
		0 10	20 20	30 30	50 50 30	50 30	60 30	40 20	20 10	

Cross-correlation filtering

Let's write this down as an equation. Assume the averaging window is (2k+1)x(2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

We can generalize this idea by allowing different weights for different neighboring pixels:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i+u, j+v]$$

This is called a cross-correlation operation and written:

$$G = H \otimes F$$

H is called the "filter," "kernel," or "mask."

The above allows negative filter indices. When you implement need to use: H[u+k,v+k] instead of H[u,v]

Mean kernel

What's the kernel for a 3x3 mean filter?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

Mean vs. Gaussian filtering

Gaussian filtering

A Gaussian kernel gives less weight to pixels further from the center of the window

13

0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

H[u, v]

F[x, y]

This kernel is an approximation of a Gaussian function:

Photoshop demo

What happens if you increase σ ?

15

Image gradient

How can we differentiate a *digital* image F[x,y]?

14

- Option 1: reconstruct a continuous image, *f*, then take gradient
- Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a cross-correlation?

16

Image gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

It points in the direction of most rapid change in intensity

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

17

Continuous Filters

We can also apply filters to continuous images.

In the case of cross correlation: $g = h \otimes f$

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x+u,y+v) du dv$$

In the case of convolution: $g = h \star f$

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x-u,y-v) du dv$$

Note that the image and filter are infinite.

Convolution

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

It is written: $G = H \star F$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Suppose F is an impulse function (previous slide) What will G look like?

18

More on filters...

Cross-correlation/convolution is useful for, e.g.,

- Blurring
- Sharpening
- Edge Detection
- Interpolation

Convolution has a number of nice properties

- Commutative, associative
- Convolution corresponds to product in the Fourier domain

More sophisticated filtering techniques can often yield superior results for these and other tasks:

- Polynomial (e.g., bicubic) filters
- Steerable filters
- Median filters
- Bilateral Filters
- ...

(see text, web for more details on these)