Edges and Scale
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From Sandlot Science

Today’s reading
» Cipolla & Gee on edge detection (available online)
» Szeliski 3.4.1-3.4.2

Origin of Edges

O surface normal discontinuity

«+——s— depth discontinuity

A surface color discontinuity
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Edges are caused by a variety of factors

Detecting edges

What's an edge?
+ intensity discontinuity (= rapid change)

How can we find large changes in intensity?
+ gradient operator seems like the right solution

Effects of noise

Consider a single row or column of the image
+ Plotting intensity as a function of position gives a signal
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Where is the edge?

44— illumination discontinuity




Solution: smooth first

Sigma = 50
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Where is the edge? Look for peaks in 8%(h * f)

Associative property of convolution

Selhx ) = (G5h) « f
This saves us one operation:

Sigma = 50
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Laplacian of Gaussian
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Consider %(h * f)

Sigma = 50
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Where is the edge?  Zero-crossings of bottom graph

2D edge detection filters
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Laplacian of Gaussian

Gaussian derivative of Gaussian
, 1 _ulhe? d o (1 0)
o(u,v) = e 2 - u, v
o(u,v) 27102 ox

V2 is the Laplacian operator:
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The Sobel operator The effect of scale on edge detection

Common approximation of derivative of Gaussian
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» The standard defn. of the Sobel operator omits the 1/8 term
— doesn’'t make a difference for edge detection
— the 1/8 term is needed to get the right gradient value, however
larger O \
n . 1 n nnﬂa ”H

Scale space (Witkin 83

Some times we want many resolutions Gaussian pyramid construction

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2"x2k images (assuming N=2¥)
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* Filter (called “prefiltering”)
Known as a Gaussian Pyramid [Burt and Adelson, 1983] * Subsample (faster approach: filter only %4 of pixels)
« In computer graphics, a mip map [Williams, 1983] Until minimum resolution reached

* A precursor to wavelet transform + can specify desired number of levels (e.g., 3-level pyramid)

Gaussian Pyramids have all sorts of applications in computer vision The whole pyramid is onIy 4/3 the size of the original image'




Subsampling with Gaussian pre-filtering

T

Gaussian 1/2
Filter the image, then subsample

Subsampling with Gaussian pre-filtering

Gaussian 1/2 G1/4
Filter the image, then subsample

Subsampling without pre-filtering

1/2 1/4 (2x zoom) 1/8 (4x zoom
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Sampling and the Nyquist rate
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Aliasing can arise when you sample a continuous signal or image

» occurs when your sampling rate is not high enough to capture the
amount of detail in your image

+ Can give you the wrong signal/image—an alias
» formally, the image contains structure at different scales
— called “frequencies” in the Fourier domain
+ the sampling rate must be high enough to capture the highest
frequency in the image
To avoid aliasing:
+ sampling rate = 2 * max frequency in the image
— said another way: = two samples per cycle
» This minimum sampling rate is called the Nyquist rate




Image resampling

Image resampling

So far, we considered only power-of-two subsampling
+ What about arbitrary scale reduction?
* How can we increase the size of the image?

d = 1in this
example
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Recall how a digital image is formed
Flz,y] = quantize{f(zd, yd)}
« ltis a discrete point-sampling of a continuous function

« If we could somehow reconstruct the original function, any
new image could be generated, at any resolution and scale

So far, we considered only power-of-two subsampling
+ What about arbitrary scale reduction?
* How can we increase the size of the image?

d =1in this
example
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Recall how a digital image is formed
Flz,y] = quantize{f(zd, yd)}
« ltis a discrete point-sampling of a continuous function

+ If we could somehow reconstruct the original function, any
new image could be generated, at any resolution and scale

Image resampling

Resampling filters

So what to do if we don’t know f
« Answer: guess an approximation f
+ Can be done in a principled way: filtering

1 d =1 in this
h example
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Image reconstruction

« Convert F' to a continuous function
fr(z) = F(3) when 7 is an integer, 0 otherwise

* Reconstruct by cross-correlation:

f=hefp

What does the 2D version of this hat function look like?

h(x) h(z,y) @ é

performs (tent function) performs
linear interpolation bilinear interpolation

Often implemented without cross-correlation
+ E.g., http://fen.wikipedia.org/wiki/Bilinear_interpolation
Better filters give better resampled images

* Bicubic is common choice
— fit 3 degree polynomial surface to pixels in neighborhood




