Segmentation and Clustering

Today's Readings

- Forsyth & Ponce, Chapter 7
- (plus lots of optional references in the slides)

From images to objects

What Defines an Object?

- · Subjective problem, but has been well-studied
- · Gestalt Laws seek to formalize this
 - proximity, similarity, continuation, closure, common fate
 - see notes by Steve Joordens, U. Toronto

Extracting objects

How could this be done?

Image Segmentation

Many approaches proposed

- cues: color, regions, contours
- automatic vs. user-guided
- no clear winner
- we'll consider several approaches today

Intelligent Scissors (demo)

Figure 2: *Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor move-ment). The path of the free point is shown in white. Live-wire segments from previous free point positions (t*₀, t_1 , *and t*₂) *are shown in green.*

Intelligent Scissors [Mortensen 95]

Approach answers a basic question

• Q: how to find a path from seed to mouse that follows object boundary as closely as possible?

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions (i_0 , i_1 , and i_2) are shown in green.

Intelligent Scissors

Basic Idea

- Define edge score for each pixel
 - edge pixels have low cost
- · Find lowest cost path from seed to mouse

Questions

- · How to define costs?
- · How to find the path?

Path Search (basic idea)

Graph Search Algorithm

· Computes minimum cost path from seed to all other pixels

How does this really work?

Treat the image as a graph

Graph

- node for every pixel p
- link between every adjacent pair of pixels, p,q
- cost c for each link

Note: each link has a cost

• this is a little different than the figure before where each pixel had a cost

Defining the costs

Treat the image as a graph

Want to hug image edges: how to define cost of a link?

- · the link should follow the intensity edge
 - want intensity to change rapidly $\perp\,$ to the link
- $c \approx |\text{difference of intensity} \perp \text{to link}|$

Defining the costs

c can be computed using a cross-correlation filter

• assume it is centered at p

Also typically scale c by its length

- set c = (max-|filter response|)
 - where max = maximum |filter response| over all pixels in the image

Defining the costs

c can be computed using a cross-correlation filter

• assume it is centered at p

Also typically scale c by its length

- set c = (max-|filter response|)
 - where max = maximum |filter response| over all pixels in the image

Dijkstra's shortest path algorithm

Algorithm

- 1. init node costs to ∞ , set p = seed point, cost(p) = 0
- 2. expand p as follows:

for each of p's neighbors q that are not expanded

» set cost(q) = min(cost(p) + c_{pq}, cost(q))

Dijkstra's shortest path algorithm

Algorithm

- 1. init node costs to ∞ , set p = seed point, cost(p) = 0
- 2. expand p as follows:

for each of p's neighbors q that are not expanded

- » set $cost(q) = min(cost(p) + c_{pq}, cost(q))$
 - » if q's cost changed, make q point back to p
- » put q on the ACTIVE list (if not already there)

Dijkstra's shortest path algorithm

Algorithm

- 1. init node costs to ∞ , set p = seed point, cost(p) = 0
- 2. expand p as follows:
 - for each of p's neighbors q that are not expanded
 - » set $cost(q) = min(cost(p) + c_{pq}, cost(q))$
 - » if q's cost changed, make q point back to p
 - » put q on the ACTIVE list (if not already there)
- 3. set r = node with minimum cost on the ACTIVE list

4. repeat Step 2 for p = r

Dijkstra's shortest path algorithm

Algorithm

- 1. init node costs to ∞ , set p = seed point, cost(p) = 0
- 2. expand p as follows:
 - for each of p's neighbors q that are not expanded
 - » set $cost(q) = min(cost(p) + c_{pq}, cost(q))$
 - » if q's cost changed, make q point back to p
 - » put ${\bf q}$ on the ACTIVE list $% {\bf q}$ (if not already there)
- 3. set r = node with minimum cost on the ACTIVE list
- 4. repeat Step 2 for p = r

Dijkstra's shortest path algorithm

Properties

- · It computes the minimum cost path from the seed to every node in the graph. This set of minimum paths is represented as a tree
- Running time, with N pixels:
 - O(N²) time if you use an active list
 - O(N log N) if you use an active priority queue (heap)
 - takes fraction of a second for a typical (640x480) image
- · Once this tree is computed once, we can extract the optimal path from any point to the seed in O(N) time.
 - it runs in real time as the mouse moves
- What happens when the user specifies a new seed?

Segmentation by min (s-t) cut [Boykov 2001]

- · node for each pixel, link between pixels
- · specify a few pixels as foreground and background
 - create an infinite cost link from each bg pixel to the "t" node
 - create an infinite cost link from each fg pixel to the "s" node
- · compute min cut that separates s from t
- how to define link cost between neighboring pixels?

Grabcut [Rother et al., SIGGRAPH 2004]

Is user-input required?

Our visual system is proof that automatic methods are possible

· classical image segmentation methods are automatic

Argument for user-directed methods?

· only user knows desired scale/object of interest

Automatic graph cut [Shi & Malik]

Fully-connected graph

- node for every pixel
- link between every pair of pixels, p,q
- cost c_{pq} for each link
 - c_{pq} measures similarity
 - » similarity is *inversely proportional* to difference in color and position

Segmentation by Graph Cuts

Break Graph into Segments

- · Delete links that cross between segments
- · Easiest to break links that have low cost (similarity)
 - $-\,$ similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Cuts in a graph

Link Cut

- · set of links whose removal makes a graph disconnected
- cost of a cut:

$$cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$$

Find minimum cut

• gives you a segmentation

But min cut is not always the best cut...

Cuts in a graph

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

 $Ncut(A,B) = \frac{cut(A,B)}{volume(A)} + \frac{cut(A,B)}{volume(B)}$

• volume(A) = sum of costs of all edges that touch A

Interpretation as a Dynamical System

Treat the links as springs and shake the system

- · elasticity proportional to cost
- vibration "modes" correspond to segments
 - can compute these by solving an eigenvector problem
 - http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf

Interpretation as a Dynamical System

Treat the links as springs and shake the system

- · elasticity proportional to cost
- · vibration "modes" correspond to segments
 - can compute these by solving an eigenvector problem
 - http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf

Color Image Segmentation

Extension to Soft Segmentation

- Each pixel is convex combination of segments. Levin et al. 2006
 - compute mattes by solving eigenvector problem

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color

Here's what it looks like if we use two colors

Clustering

How to choose the representative colors?

• This is a clustering problem!

Objective

• Each point should be as close as possible to a cluster center – Minimize sum squared distance of each point to closest center

 $||p - c_i||^2$

 \sum clusters ipoints p in cluster i

Break it down into subproblems

Suppose I tell you the cluster centers c_i

- Q: how to determine which points to associate with each c_i?
- A: for each point p, choose closest c_i

Suppose I tell you the points in each cluster

- Q: how to determine the cluster centers?
- A: choose c_i to be the mean of all points in the cluster

K-means clustering

K-means clustering algorithm

- 1. Randomly initialize the cluster centers, $c_1, ..., c_K$
- 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest $\boldsymbol{c}_i. \ Put \ p$ into cluster i
- 3. Given points in each cluster, solve for \boldsymbol{c}_i
 - Set c_i to be the mean of points in cluster i
- 4. If c_i have changed, repeat Step 2

Java demo: http://home.dei.polimi.it/matteucc/Clustering/tutorial html/AppletKM.html

Properties

- Will always converge to some solution
- Can be a "local minimum"
 - · does not always find the global minimum of objective function:

 $\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} \|p - c_i\|^2$

K-Means++

Can we prevent arbitrarily bad local minima?

- 1. Randomly choose first center.
- 2. Pick new center with prob. proportional to: $||p c_i||^2$ (contribution of *p* to total error)
- 3. Repeat until k centers.

expected error = $O(\log k)$ * optimal

Arthur & Vassilvitskii 2007

Probabilistic clustering

Basic questions

- what's the probability that a point **x** is in cluster m?
- what's the shape of each cluster?

K-means doesn't answer these questions

Basic idea

- instead of treating the data as a bunch of points, assume that they are all generated by sampling a continuous function
- This function is called a generative model
 - defined by a vector of parameters $\pmb{\theta}$

Mixture of Gaussians

One generative model is a mixture of Gaussians (MOG)

+ K Gaussian blobs with means μ_b covariance matrices $\boldsymbol{V}_b,$ dimension d

- blob *b* defined by:
$$P(x|\mu_b, V_b) = \frac{1}{\sqrt{(2\pi)^d |V_b|}} e^{-\frac{1}{2}(x-\mu_b)^T V_b^{-1}(x-\mu_b)}$$

- blob b is selected with probability $lpha_b$
- the likelihood of observing ${\boldsymbol x}$ is a weighted mixture of Gaussians

$$P(x|\theta) = \sum_{b=1}^{K} \alpha_b P(x|\theta_b)$$

• where $\theta = [\mu_1, \dots, \mu_n, V_1, \dots, V_n]$

EM details

E-step

- compute probability that point \boldsymbol{x} is in blob i, given current guess of $\boldsymbol{\theta}$

$$P(b|x, \mu_b, V_b) = \frac{\alpha_b P(x|\mu_b, V_b)}{\sum_{i=1}^{K} \alpha_i P(x|\mu_i, V_i)}$$

M-step

· compute probability that blob b is selected

$$\alpha_b^{new} = \frac{1}{N} \sum_{i=1}^{N} P(b|x_i, \mu_b, V_b) \qquad \text{N data points}$$

· mean of blob b

$$\mu_b^{new} = \frac{\sum_{i=1}^{N} x_i P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^{N} P(b|x_i, \mu_b, V_b)}$$

· covariance of blob b

$$V_b^{new} = \frac{\sum_{i=1}^N (x_i - \mu_b^{new}) (x_i - \mu_b^{new})^T P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^N P(b|x_i, \mu_b, V_b)}$$

Expectation maximization (EM)

Goal

- find blob parameters θ that maximize the likelihood function:

$$P(data|\theta) = \prod_{x} P(x|\theta)$$

Approach:

- 1. E step: given current guess of blobs, compute ownership of each point
- 2. M step: given ownership probabilities, update blobs to maximize likelihood function
- 3. repeat until convergence

EM demo

http://lcn.epfl.ch/tutorial/english/gaussian/html/index.html

Applications of EM

Turns out this is useful for all sorts of problems

- · any clustering problem
- any model estimation problem
- · missing data problems
- finding outliers
- · segmentation problems
 - segmentation based on color
 - segmentation based on motion
 - foreground/background separation

• ...

Problems with EM

- 1. Local minima k-means is NP-hard even with k=2
- 2. Need to know number of segments solutions: AIC, BIC, Dirichlet process mixture
- 3. Need to choose generative model

Finding Modes in a Histogram

How Many Modes Are There?

· Easy to see, hard to compute

Mean Shift [Comaniciu & Meer]

Iterative Mode Search

- 1. Initialize random seed, and window W
- 2. Calculate center of gravity (the "mean") of W: $\sum xH(x)$ $x \in W$
- 3. Translate the search window to the mean
- 4. Repeat Step 2 until convergence

Mean-Shift

Approach

- Initialize a window around each point
- · See where it shifts-this determines which segment it's in
- Multiple points will shift to the same segment

Mean shift trajectories

Mean-shift for image segmentation

Useful to take into account spatial information

- instead of (R, G, B), run in (R, G, B, x, y) space
- D. Comaniciu, P. Meer, Mean shift analysis and applications, 7th International Conference on Computer Vision, Kerkyra, Greece, September 1999, 1197-1203.
 - http://www.caip.rutgers.edu/riul/research/papers/pdf/spatmsft.pdf

More Examples: <u>http://www.caip.rutgers.edu/~comanici/segm_images.html</u>

Choosing Exemplars (Medoids)

like k-means, but means must be data points

Algorithms:

- greedy k-means
- affinity propagation (Frey & Dueck 2007)
- medoid shift (Sheikh et al. 2007)

Scene Summarization

Taxonomy of Segmentation Methods

- Graph Based vs. Point-Based (bag of pixels)
- User-Directed vs. Automatic
- Partitional vs. Hierarchical

K-Means: point-based, automatic, partitional

Graph Cut: graph-based, user-directed, partitional

References

- Mortensen and Barrett, "<u>Intelligent Scissors for Image</u> <u>Composition</u>," Proc. *SIGGRAPH* 1995.
- Boykov and Jolly, "<u>Interactive Graph Cuts for Optimal</u> <u>Boundary & Region Segmentation of Objects in N-D</u> <u>images</u>," Proc. ICCV, 2001.
- Shi and Malik, "<u>Normalized Cuts and Image Segmentation</u>," Proc. CVPR 1997.
- Comaniciu and Meer, "<u>Mean shift analysis and applications</u>," Proc. *ICCV* 1999.