Today’s Readings
• Forsyth & Ponce, Chapter 7
• (plus lots of optional references in the slides)

What Defines an Object?
• Subjective problem, but has been well-studied
• Gestalt Laws seek to formalize this
 – proximity, similarity, continuation, closure, common fate
 – see notes by Steve Joordens, U. Toronto

Extracting objects

How could this be done?

Many approaches proposed
• cues: color, regions, contours
• automatic vs. user-guided
• no clear winner
• we’ll consider several approaches today
Intelligent Scissors (demo)

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions (t₀, t₁, and t₂) are shown in green.

Intelligent Scissors [Mortensen 95]

Approach answers a basic question
- Q: how to find a path from seed to mouse that follows object boundary as closely as possible?

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions (t₀, t₁, and t₂) are shown in green.

Intelligent Scissors

Basic Idea
- Define edge score for each pixel
 - edge pixels have low cost
- Find lowest cost path from seed to mouse

Questions
- How to define costs?
- How to find the path?

Path Search (basic idea)

Graph Search Algorithm
- Computes minimum cost path from seed to all other pixels

![Graph Search Algorithm Diagram]
How does this really work?

Treat the image as a graph

Graph
- node for every pixel \(p \)
- link between every adjacent pair of pixels, \(p, q \)
- cost \(c \) for each link

Note: each link has a cost
- this is a little different than the figure before where each pixel had a cost

Defining the costs

Treat the image as a graph

Want to hug image edges: how to define cost of a link?
- the link should follow the intensity edge
 - want intensity to change rapidly \(\perp \) to the link
- \(c \approx \) [difference of intensity \(\perp \) to link]

Defining the costs

\[c \] can be computed using a cross-correlation filter
- assume it is centered at \(p \)
Also typically scale \(c \) by its length
- set \(c = (\text{max}-|\text{filter response}|) \)
 - where \(\text{max} = \) maximum [filter response] over all pixels in the image

Defining the costs

\[H_c \]

\[H_w \]

\[\frac{1}{4} \]

\[c \] can be computed using a cross-correlation filter
- assume it is centered at \(p \)
Also typically scale \(c \) by its length
- set \(c = (\text{max}-|\text{filter response}|) \)
 - where \(\text{max} = \) maximum [filter response] over all pixels in the image
Dijkstra's shortest path algorithm

Algorithm
1. init node costs to ∞, set $p = \text{seed point}$, $\text{cost}(p) = 0$
2. expand p as follows:
 for each of p's neighbors q that are not expanded
 » set $\text{cost}(q) = \min(\text{cost}(p) + c_{pq}, \text{cost}(q))$
 » if q's cost changed, make q point back to p
 » put q on the ACTIVE list (if not already there)
3. set $r = \text{node with minimum cost on the ACTIVE list}$
4. repeat Step 2 for $p = r$

Dijkstra's shortest path algorithm

Algorithm
1. init node costs to ∞, set $p = \text{seed point}$, $\text{cost}(p) = 0$
2. expand p as follows:
 for each of p's neighbors q that are not expanded
 » set $\text{cost}(q) = \min(\text{cost}(p) + c_{pq}, \text{cost}(q))$
 » if q's cost changed, make q point back to p
 » put q on the ACTIVE list (if not already there)
Dijkstra’s shortest path algorithm

Properties
- It computes the minimum cost path from the seed to every node in the graph. This set of minimum paths is represented as a tree.
- Running time, with N pixels:
 - $O(N^2)$ time if you use an active list
 - $O(N \log N)$ if you use an active priority queue (heap)
 - Takes fraction of a second for a typical (640x480) image
- Once this tree is computed once, we can extract the optimal path from any point to the seed in $O(N)$ time.
 - It runs in real time as the mouse moves.
- What happens when the user specifies a new seed?

Segmentation by min (s-t) cut [Boykov 2001]

Graph
- Node for each pixel, link between pixels
- Specify a few pixels as foreground and background
 - Create an infinite cost link from each bg pixel to the “t” node
 - Create an infinite cost link from each fg pixel to the “s” node
- Compute min cut that separates s from t
 - How to define link cost between neighboring pixels?

Grabcut [Rother et al., SIGGRAPH 2004]

Is user-input required?

Our visual system is proof that automatic methods are possible
- Classical image segmentation methods are automatic

Argument for user-directed methods?
- Only user knows desired scale/object of interest
Automatic graph cut [Shi & Malik]

Fully-connected graph
- node for every pixel
- link between *every* pair of pixels, \(p, q \)
- cost \(c_{pq} \) for each link
 - \(c_{pq} \) measures similarity
 - similarity is *inversely proportional* to difference in color and position

Segmentation by Graph Cuts

Break Graph into Segments
- Delete links that cross between segments
- Easiest to break links that have low cost (similarity)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Cuts in a graph

Link Cut
- set of links whose removal makes a graph disconnected
- cost of a cut:
 \[
 \text{cut}(A, B) = \sum_{p \in A, q \in B} c_{pq}
 \]

Find minimum cut
- gives you a segmentation

But min cut is not always the best cut...

Min-cut 1
- better cut

Min-cut 2
Cuts in a graph

Normalized Cut
- a cut penalizes large segments
- fix by normalizing for size of segments
\[
\text{Ncut}(A, B) = \frac{\text{cut}(A, B)}{\text{volume}(A)} + \frac{\text{cut}(A, B)}{\text{volume}(B)}
\]
- volume(A) = sum of costs of all edges that touch A

Interpretation as a Dynamical System
- Treat the links as springs and shake the system
 - elasticity proportional to cost
 - vibration “modes” correspond to segments
 - can compute these by solving an eigenvector problem

Color Image Segmentation
Extension to Soft Segmentation

- Each pixel is a convex combination of segments.

 Levin et al. 2006
 - Compute mattes by solving eigenvector problem

Histogram-based Segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color

Clustering

How to choose the representative colors?

- This is a clustering problem!

Objective

- Each point should be as close as possible to a cluster center
 - Minimize sum squared distance of each point to closest center

\[
\sum_{\text{clusters } i} \sum_{\text{points } p \text{ in cluster } i} ||p - c_i||^2
\]
Break it down into subproblems

Suppose I tell you the cluster centers c_i
- Q: how to determine which points to associate with each c_i?
- A: for each point p, choose closest c_i

Suppose I tell you the points in each cluster
- Q: how to determine the cluster centers?
- A: choose c_i to be the mean of all points in the cluster

K-means clustering

K-means clustering algorithm
1. Randomly initialize the cluster centers, c_1, \ldots, c_K
2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
3. Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
4. If c_i have changed, repeat Step 2

Java demo: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Properties
- Will always converge to some solution
- Can be a “local minimum”
 - does not always find the global minimum of objective function:
 $$\sum_{clusters \ i} \sum_{points \ in \ cluster \ i} ||p - c_i||^2$$

K-Means++

Can we prevent arbitrarily bad local minima?
1. Randomly choose first center.
2. Pick new center with prob. proportional to: $||p - c_i||^2$
 (contribution of p to total error)
3. Repeat until k centers.

expected error = $O(\log k) \ast$ optimal

Arthur & Vassilvitskii 2007

Probabilistic clustering

Basic questions
- what’s the probability that a point x is in cluster m?
- what’s the shape of each cluster?
K-means doesn’t answer these questions

Basic idea
- instead of treating the data as a bunch of points, assume that they are all generated by sampling a continuous function
- This function is called a generative model
 - defined by a vector of parameters θ
Mixture of Gaussians

One generative model is a mixture of Gaussians (MOG)

- K Gaussian blobs with means μ_b, covariance matrices V_b, dimension d
 - blob b defined by: $p(x|\mu_b, V_b) = \frac{1}{\sqrt{(2\pi)^d|V_b|}} e^{-\frac{1}{2}(x-\mu_b)^TV_b^{-1}(x-\mu_b)}$
 - blob b is selected with probability α_b
 - the likelihood of observing x is a weighted mixture of Gaussians

 \[P(x|\theta) = \sum_{b=1}^{K} \alpha_b p(x|\theta_b) \]

- where $\theta = [\mu_1, \ldots, \mu_n, V_1, \ldots, V_n]$

Expectation maximization (EM)

Goal

- find blob parameters θ that maximize the likelihood function:
 \[P(data|\theta) = \prod_x P(x|\theta) \]

Approach:

1. E step: given current guess of blobs, compute ownership of each point
2. M step: given ownership probabilities, update blobs to maximize likelihood function
3. repeat until convergence

EM details

E-step

- compute probability that point x is in blob i, given current guess of θ
 \[P(b|x, \mu_b, V_b) = \frac{\alpha_b p(x|\mu_b, V_b)}{\sum_{i=1}^{K} \alpha_i p(x|\mu_i, V_i)} \]

M-step

- compute probability that blob b is selected
 \[\alpha_b^{new} = \frac{1}{N} \sum_{i=1}^{N} P(b|x_i, \mu_b, V_b) \quad \text{N data points} \]
- mean of blob b
 \[\mu_b^{new} = \frac{\sum_{i=1}^{N} x_i P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^{N} P(b|x_i, \mu_b, V_b)} \]
- covariance of blob b
 \[V_b^{new} = \frac{\sum_{i=1}^{N} (x_i - \mu_b^{new})(x_i - \mu_b^{new})^T P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^{N} P(b|x_i, \mu_b, V_b)} \]

EM demo

Applications of EM

Turns out this is useful for all sorts of problems:
- any clustering problem
- any model estimation problem
- missing data problems
- finding outliers
- segmentation problems
 - segmentation based on color
 - segmentation based on motion
 - foreground/background separation
- ...

Problems with EM

1. Local minima
 k-means is NP-hard even with k=2

2. Need to know number of segments
 solutions: AIC, BIC, Dirichlet process mixture

3. Need to choose generative model

Finding Modes in a Histogram

How Many Modes Are There?
- Easy to see, hard to compute

Mean Shift [Comaniciu & Meer]

Iterative Mode Search
1. Initialize random seed, and window W
2. Calculate center of gravity (the "mean") of W: \(\sum_{x \in W} x H(x) \)
3. Translate the search window to the mean
4. Repeat Step 2 until convergence
Mean-Shift Approach
- Initialize a window around each point
- See where it shifts—this determines which segment it’s in
- Multiple points will shift to the same segment

Mean-shift for image segmentation
Useful to take into account spatial information
- instead of (R, G, B), run in (R, G, B, x, y) space
- D. Comaniciu, P. Meer, Mean shift analysis and applications, 7th International Conference on Computer Vision, Kerkyra, Greece, September 1999, 1197-1203.

More Examples: http://www.caip.rutgers.edu/~comanici/segm_images.html

Choosing Exemplars (Medoids)
like k-means, but means must be data points

Algorithms:
- greedy k-means
- affinity propagation (Frey & Dueck 2007)
- medoid shift (Sheikh et al. 2007)

Scene Summarization

Taxonomy of Segmentation Methods
- Graph Based vs. Point-Based (bag of pixels)
- User-Directed vs. Automatic
- Partitional vs. Hierarchical

K-Means:
 point-based, automatic, partitional

Graph Cut:
 graph-based, user-directed, partitional
References