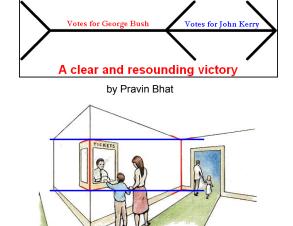
Projection

Readings

Szeliski 2.1

Müller-Lyer Illusion



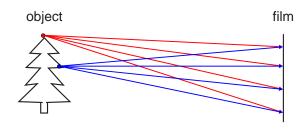
http://www.michaelbach.de/ot/sze muelue/index.html

Projection

Readings

Szeliski 2.1

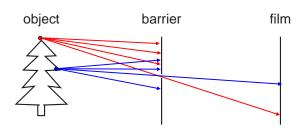
Image formation



Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

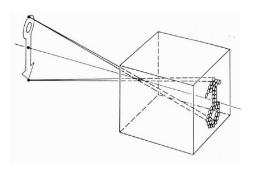
Pinhole camera



Add a barrier to block off most of the rays

- · This reduces blurring
- The opening known as the aperture
- How does this transform the image?

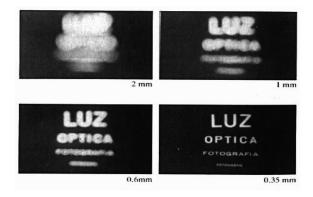
Camera Obscura



The first camera

- · Known to Aristotle
- · How does the aperture size affect the image?

Shrinking the aperture

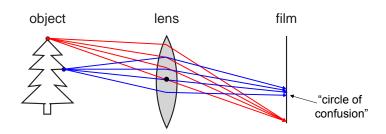


Why not make the aperture as small as possible?

- · Less light gets through
- · Diffraction effects...

Shrinking the aperture

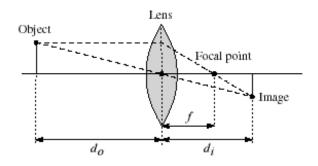
Adding a lens



A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
- · Changing the shape of the lens changes this distance

Thin lenses



Thin lens equation: $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{d_i}$

- · Any object point satisfying this equation is in focus
- · What is the shape of the focus region?
- How can we change the focus region?
- Thin lens applet: http://www.phy.ntnu.edu.tw/java/Lens/lens e.html (by Fu-Kwun Hwang)

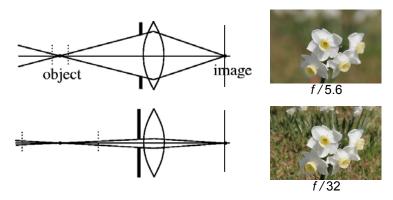
Lenses



A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
 - f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays
 - aperture may be on either side of the lens
- · Lenses are typically spherical (easier to produce)

Depth of field

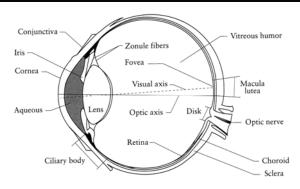


Changing the aperture size affects depth of field

 A smaller aperture increases the range in which the object is approximately in focus

Flower images from Wikipedia http://en.wikipedia.org/wiki/Depth of field

The eye



The human eye is a camera

- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris
- · What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

Issues with digital cameras

Noise

- big difference between consumer vs. SLR-style cameras
- low light is where you most notice noise

Compression

- creates <u>artifacts</u> except in uncompressed formats (tiff, raw)

Color

- color fringing artifacts from Bayer patterns

Blooming

- charge overflowing into neighboring pixels

In-camera processing

oversharpening can produce <u>halos</u>

Interlaced vs. progressive scan video

- even/odd rows from different exposures

Are more megapixels better?

- requires higher quality lens
- noise issues

Stabilization

- compensate for camera shake (mechanical vs. electronic)

More info online, e.g.,

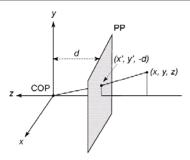
- http://electronics.howstuffworks.com/digital-camera.htm
- http://www.dpreview.com/

Digital camera

A digital camera replaces film with a sensor array

- · Each cell in the array is a Charge Coupled Device
 - light-sensitive diode that converts photons to electrons
 - other variants exist: CMOS is becoming more popular
 - http://electronics.howstuffworks.com/digital-camera.htm

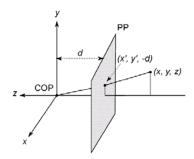
Modeling projection



The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
 - Why?
- The camera looks down the negative z axis
 - we need this if we want right-handed-coordinates

Modeling projection



Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- · Derived using similar triangles (on board)

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

· We get the projection by throwing out the last coordinate:

$$(x, y, z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as **perspective projection**

- The matrix is the projection matrix
- Can also formulate as a 4x4 (today's reading does this)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by fourth coordinate

Homogeneous coordinates

Is this a linear transformation?

no—division by z is nonlinear

Trick: add one more coordinate:

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

homogeneous image coordinates

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection

How does scaling the projection matrix change the transformation?

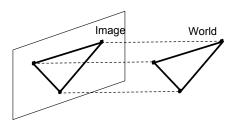
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Orthographic projection

Special case of perspective projection

· Distance from the COP to the PP is infinite



- · Good approximation for telephoto optics
- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$
- What's the projection matrix?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Variants of orthographic projection

Scaled orthographic

· Also called "weak perspective"

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/d \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1/d \end{bmatrix} \Rightarrow (dx, dy)$$

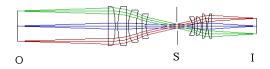
Affine projection

· Also called "paraperspective"

$$\left[\begin{array}{ccc}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{array}\right]
\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]$$

Orthographic ("telecentric") lenses

Navitar telecentric zoom lens



http://www.lhup.edu/~dsimanek/3d/telecent.htm

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c), pixel size (s_x, s_v)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

- · The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

identity matrix

$$\mathbf{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{1}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$

intrincies

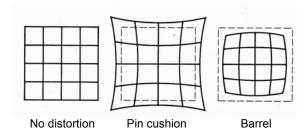
projection

tation to

• The definitions of these parameters are **not** completely standardized

- especially intrinsics-varies from one book to another

Distortion



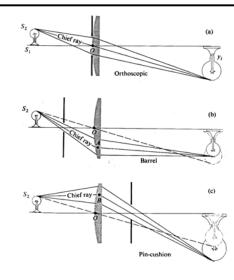
Radial distortion of the image

- · Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from Helmut Dersch

Distortion



Modeling distortion

 $\begin{array}{lll} \text{Project } (\hat{x},\hat{y},\hat{z}) & x_n' & = & \hat{x}/\hat{z} \\ \text{to "normalized"} & y_n' & = & \hat{y}/\hat{z} \end{array}$

 $r^2 = x_n'^2 + y_n'^2$

Apply radial distortion $x_d' = x_n'(1 + \kappa_1 r^2 + \kappa_2 r^4)$

 $y_d' = y_n'(1 + \kappa_1 r^2 + \kappa_2 r^4)$

Apply focal length translate image center $x' = fx'_d + x_c$ $y' = fy'_d + y_c$

To model lens distortion

Use above projection operation instead of standard projection matrix multiplication

Other types of projection

Lots of intriguing variants...
(I'll just mention a few fun ones)

360 degree field of view...

Basic approach

- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- Or buy one a lens from a variety of omnicam manufacturers...
 - See http://www.cis.upenn.edu/~kostas/omni.html

Tilt-shift

http://www.northlight-images.co.uk/article_pages/tilt_and_shift_ts-e.html

Titlt-shift images from Olivo Barbieri and Photoshop imitations

Rotating sensor (or object)

Rollout Photographs © Justin Kerr http://research.famsi.org/kerrmaya.html

Also known as "cyclographs", "peripheral images"

Photofinish

