
Edges and Scale

Today’s reading
• Cipolla & Gee on edge detection (available online)
• Szeliski 3.4.1 – 3.4.2

From Sandlot Science

Origin of Edges

Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Detecting edges
What’s an edge?

• intensity discontinuity (= rapid change)

How can we find large changes in intensity?
• gradient operator seems like the right solution

Effects of noise
Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal

Where is the edge?

Where is the edge?

Solution: smooth first

Look for peaks in

Associative property of convolution

This saves us one operation:

Laplacian of Gaussian

Consider

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

The Sobel operator
Common approximation of derivative of Gaussian

-1 0 1

-2 0 2
-1 0 1

1 2 1

0 0 0
-1 -2 -1

• The standard defn. of the Sobel operator omits the 1/8 term
– doesn’t make a difference for edge detection
– the 1/8 term is needed to get the right gradient value, however

The effect of scale on edge detection

larger

larger

Scale space (Witkin 83)

Some times we want many resolutions

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
• In computer graphics, a mip map [Williams, 1983]
• A precursor to wavelet transform

Gaussian Pyramids have all sorts of applications in computer vision

Gaussian pyramid construction

filter kernel

Repeat
• Filter
• Subsample

Until minimum resolution reached
• can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

Subsampling with Gaussian pre-filtering

G 1/4

G 1/8

Gaussian 1/2
Filter the image, then subsample

Subsampling with Gaussian pre-filtering

G 1/4 G 1/8Gaussian 1/2
Filter the image, then subsample

Subsampling without pre-filtering

1/4 (2x zoom) 1/8 (4x zoom)1/2

Sampling and the Nyquist rate

Aliasing can arise when you sample a continuous signal or image
• occurs when your sampling rate is not high enough to capture the

amount of detail in your image
• Can give you the wrong signal/image—an alias
• formally, the image contains structure at different scales

– called “frequencies” in the Fourier domain
• the sampling rate must be high enough to capture the highest

frequency in the image
To avoid aliasing:

• sampling rate ≥ 2 * max frequency in the image
– said another way: ≥ two samples per cycle

• This minimum sampling rate is called the Nyquist rate

Image resampling
So far, we considered only power-of-two subsampling

• What about arbitrary scale reduction?
• How can we increase the size of the image?

Recall how a digital image is formed

• It is a discrete point-sampling of a continuous function
• If we could somehow reconstruct the original function, any

new image could be generated, at any resolution and scale

1 2 3 4 5

d = 1 in this
example

Image resampling
So far, we considered only power-of-two subsampling

• What about arbitrary scale reduction?
• How can we increase the size of the image?

Recall how a digital image is formed

• It is a discrete point-sampling of a continuous function
• If we could somehow reconstruct the original function, any

new image could be generated, at any resolution and scale

1 2 3 4 5

d = 1 in this
example

Image resampling
So what to do if we don’t know

1 2 3 4 52.5

1 d = 1 in this
example

• Answer: guess an approximation
• Can be done in a principled way: filtering

Image reconstruction
• Convert to a continuous function

• Reconstruct by cross-correlation:

Resampling filters
What does the 2D version of this hat function look like?

Often implemented without cross-correlation
• E.g., http://en.wikipedia.org/wiki/Bilinear_interpolation

Better filters give better resampled images
• Bicubic is common choice

– fit 3rd degree polynomial surface to pixels in neighborhood

performs
linear interpolation

(tent function) performs
bilinear interpolation

