Today’s reading
- Cipolla & Gee on edge detection (available online)
- Szeliski 3.4.1 – 3.4.2

Edges and Scale

Origin of Edges

Edges are caused by a variety of factors

- surface normal discontinuity
- depth discontinuity
- surface color discontinuity
- illumination discontinuity

Detecting edges

What’s an edge?
- intensity discontinuity (= rapid change)

How can we find large changes in intensity?
- gradient operator seems like the right solution

Effects of noise

Consider a single row or column of the image
- Plotting intensity as a function of position gives a signal

Where is the edge?
Solution: smooth first

Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h * f)$

Associative property of convolution

$$\frac{\partial}{\partial x}(h * f) = (\frac{\partial}{\partial x}h) * f$$

This saves us one operation:

Where is the edge? Zero-crossings of bottom graph

Laplacian of Gaussian

Consider $\frac{\partial^2}{\partial x^2}(h * f)$

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

∇^2 is the Laplacian operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$
The Sobel operator

Common approximation of derivative of Gaussian

\[
\begin{pmatrix}
1 & 0 & -1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{pmatrix}
\]

\(s_x\)

\(s_y\)

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn’t make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value, however

Some times we want many resolutions

Known as a **Gaussian Pyramid** [Burt and Adelson, 1983]
- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to *wavelet transform*

Gaussian Pyramids have all sorts of applications in computer vision

The effect of scale on edge detection

Scale space (Witkin 83)

Gaussian pyramid construction

Repeat
- Filter
- Subsample
Until minimum resolution reached
- can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!
Subsampling with Gaussian pre-filtering

Filter the image, *then* subsample

Gaussian 1/2

G 1/4

G 1/8

Subsampling **without** pre-filtering

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Sampling and the Nyquist rate

Aliasing can arise when you sample a continuous signal or image

- occurs when your sampling rate is not high enough to capture the amount of detail in your image
- Can give you the wrong signal/image—an **alias**
- formally, the image contains structure at different scales—called “frequencies” in the Fourier domain
- the sampling rate must be high enough to capture the highest frequency in the image

To avoid aliasing:

- sampling rate ≥ 2 * max frequency in the image
 - said another way: ≥ two samples per cycle
- This minimum sampling rate is called the **Nyquist rate**
Image resampling

So far, we considered only power-of-two subsampling
• What about arbitrary scale reduction?
• How can we increase the size of the image?

Recall how a digital image is formed
\[F[x, y] = \text{quantize}\{f(xd, yd)\} \]
• It is a discrete point-sampling of a continuous function
• If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Image reconstruction
• Convert \(F \) to a continuous function
 \[f_F(x) = F(\frac{x}{d}) \] when \(\frac{x}{d} \) is an integer, 0 otherwise
• Reconstruct by cross-correlation:
 \[\tilde{f} = h \otimes f_F \]

Resampling filters

What does the 2D version of this hat function look like?

Often implemented without cross-correlation
• E.g., [Bilinear interpolation](http://en.wikipedia.org/wiki/Bilinear_interpolation)

Better filters give better resampled images
• Bicubic is common choice
 – fit 3rd degree polynomial surface to pixels in neighborhood