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Projective Geometry

Lecture slides by Steve Seitz (mostly)
Lecture presented by Rick Szeliski
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Final project ideas
Discussion by Steve Seitz and Rick Szeliski
…
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Projective geometry

Readings
• Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: 

Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, 
(read 23.1 - 23.5, 23.10)

– available online:  http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Ames Room
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Projective geometry—what’s it good for?
Uses of projective geometry

• Drawing
• Measurements
• Mathematics for projection
• Undistorting images
• Focus of expansion
• Camera pose estimation, match move
• Object recognition
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Applications of projective geometry 

Vermeer’s Music Lesson

Reconstructions by Criminisi et al.
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Measurements on planes

Approach:  unwarp then measure
What kind of warp is this?
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Image rectification

To unwarp (rectify) an image
• solve for homography H given p and p’
• solve equations of the form:  wp’ = Hp

– linear in unknowns:  w and coefficients of H
– H is defined up to an arbitrary scale factor
– how many points are necessary to solve for H?

p
p’

work out on board CSE 576, Spring 2008 Projective Geometry 8

Solving for homographies
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Solving for homographies

A h 0

Defines a least squares problem:
2n × 9 9 2n

• Since h is only defined up to scale, solve for unit vector ĥ
• Solution: ĥ = eigenvector of ATA with smallest eigenvalue
• Works with 4 or more points
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(0,0,0)

The projective plane
Why do we need homogeneous coordinates?

• represent points at infinity, homographies, perspective 
projection, multi-view relationships

What is the geometric intuition?
• a point in the image is a ray in projective space

(sx,sy,s)

• Each point (x,y) on the plane is represented by a ray (sx,sy,s)
– all points on the ray are equivalent:  (x, y, 1) ≅ (sx, sy, s)

image plane

(x,y,1)
-y

x-z
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Projective lines
What does a line in the image correspond to in 

projective space?

• A line is a plane of rays through origin
– all rays (x,y,z) satisfying:  ax + by + cz = 0
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• A line is also represented as a homogeneous 3-vector l
l p
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l

Point and line duality
• A line l is a homogeneous 3-vector
• It is ⊥ to every point (ray) p on the line:  l p=0

p1
p2

What is the intersection of two lines l1 and l2 ?
• p is ⊥ to l1 and l2 ⇒ p = l1 × l2

Points and lines are dual in projective space
• given any formula, can switch the meanings of points and 

lines to get another formula

l1
l2

p

What is the line l spanned by rays p1 and p2 ?
• l is ⊥ to p1 and p2 ⇒ l = p1 × p2 

• l is the plane normal
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Ideal points and lines

Ideal point (“point at infinity”)
• p ≅ (x, y, 0) – parallel to image plane
• It has infinite image coordinates

(sx,sy,0)-y

x-z image plane

Ideal line
• l ≅ (a, b, 0) – parallel to image plane

(a,b,0)
-y

x
-z image plane

• Corresponds to a line in the image (finite coordinates)
– goes through image origin (principle point) CSE 576, Spring 2008 Projective Geometry 14

Homographies of points and lines
Computed by 3x3 matrix multiplication

• To transform a point:  p’ = Hp
• To transform a line:  lp=0 → l’p’=0

– 0 = lp = lH-1Hp = lH-1p’ ⇒ l’ = lH-1

– lines are transformed by postmultiplication of H-1

CSE 576, Spring 2008 Projective Geometry 15

3D projective geometry
These concepts generalize naturally to 3D

• Homogeneous coordinates
– Projective 3D points have four coords:  P = (X,Y,Z,W)

• Duality
– A plane N is also represented by a 4-vector
– Points and planes are dual in 3D: N P=0

• Projective transformations
– Represented by 4x4 matrices T:  P’ = TP,    N’ = N T-1
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3D to 2D:  “perspective” projection

Matrix Projection: ΠPp =
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What is not preserved under perspective projection?

What IS preserved?
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Vanishing points

image plane

line on ground plane

vanishing point v

Vanishing point
• projection of a point at infinity

camera
center

C
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Vanishing points

Properties
• Any two parallel lines have the same vanishing point v
• The ray from C through v is parallel to the lines
• An image may have more than one vanishing point

– in fact every pixel is a potential vanishing point

image plane

camera
center

C

line on ground plane

vanishing point v

line on ground plane
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Vanishing lines

Multiple Vanishing Points
• Any set of parallel lines on the plane define a vanishing point
• The union of all of vanishing points from lines on the same 

plane is the vanishing line
– For the ground plane, this is called the horizon

v1 v2
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Vanishing lines

Multiple Vanishing Points
• Different planes define different vanishing lines
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Computing vanishing points

V
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Computing vanishing points

Properties
• P∞ is a point at infinity, v is its projection
• They depend only on line direction
• Parallel lines P0 + tD, P1 + tD intersect at P∞

V

DPP t+= 0

∞=ΠPv

P0

D
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Computing the horizon

Properties
• l is intersection of horizontal plane through C with image plane
• Compute l from two sets of parallel lines on ground plane
• All points at same height as C project to l

– points higher than C project above l
• Provides way of comparing height of objects in the scene

ground plane

lC
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Fun with vanishing points
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Perspective cues
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Perspective cues
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Perspective cues
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Comparing heights

VanishingVanishing
PointPoint
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Measuring height

1

2

3

4

5
5.4

2.8
3.3

Camera height

What is the height of the camera?
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q1

Computing vanishing points (from lines)

Intersect p1q1 with p2q2

v

p1

p2

q2

Least squares version
• Better to use more than two lines and compute the “closest” point of 

intersection
• See notes by Bob Collins for one good way of doing this:

– http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt
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C

Measuring height without a ruler

ground plane

Compute Z from image measurements
• Need more than vanishing points to do this

Z
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The cross ratio
A Projective Invariant

• Something that does not change under projective transformations 
(including perspective projection)
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The cross-ratio of 4 collinear points

Can permute the point ordering
• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry
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image cross ratio

Measuring height

B (bottom of object)

T  (top of object)

R  (reference point)

ground plane
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Measuring height

RH

vz

r

b

t

R
H

Z

Z =
−−
−−

tvbr
rvbt

image cross ratio

H

b0

t0
vvx vy

vanishing line (horizon)
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Measuring height vz

r

b

t0
vx vy

vanishing line (horizon)

v

t0

m0

What if the point on the ground plane b0 is not known?
• Here the guy is standing on the box, height of box is known
• Use one side of the box to help find b0 as shown above

b0

t1

b1
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Computing (X,Y,Z) coordinates
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3D Modeling from a photograph
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Camera calibration
Goal:  estimate the camera parameters

• Version 1:  solve for projection matrix
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• Version 2:  solve for camera parameters separately
– intrinsics (focal length, principle point, pixel size)
– extrinsics (rotation angles, translation)
– radial distortion
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Vanishing points and projection matrix
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Π [ ]4321 ππππ=

1π 2π 3π 4π

[ ]T00011 Ππ = = vx (X vanishing point)

Z3Y2 ,similarly, vπvπ ==

[ ] origin  worldof projection10004 == TΠπ

[ ]ovvvΠ ZYX=
Not So Fast!  We only know v’s and o up to a scale factor

[ ]ovvvΠ dcba ZYX=
• Need a bit more work to get these scale factors…
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Finding the scale factors…
Let’s assume that the camera is reasonable

• Square pixels
• Image plane parallel to sensor plane
• Principal point in the center of the image
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Solving for f
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Solving for a, b, and c
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Solve for a, b, c
• Divide the first two rows by f, now that it is known
• Now just find the norms of the first three columns
• Once we know a, b, and c, that also determines R

How about d?
• Need a reference point in the scene
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Solving for d

Suppose we have one reference height H
• E.g., we known that (0, 0, H) gets mapped to (u, v)
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Finally, we can solve for t
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Calibration using a reference object
Place a known object in the scene

• identify correspondence between image and scene
• compute mapping from scene to image

Issues
• must know geometry very accurately
• must know 3D->2D correspondence CSE 576, Spring 2008 Projective Geometry 46

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs
http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm
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Estimating the projection matrix
Place a known object in the scene

• identify correspondence between image and scene
• compute mapping from scene to image

CSE 576, Spring 2008 Projective Geometry 48

Direct linear calibration
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Direct linear calibration

Can solve for mij by linear least squares
• use eigenvector trick that we used for homographies
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Direct linear calibration
Advantage:

• Very simple to formulate and solve

Disadvantages:
• Doesn’t tell you the camera parameters
• Doesn’t model radial distortion
• Hard to impose constraints (e.g., known focal length)
• Doesn’t minimize the right error function

For these reasons, nonlinear methods are preferred
• Define error function E between projected 3D points and image positions

– E is nonlinear function of intrinsics, extrinsics, radial distortion

• Minimize E using nonlinear optimization techniques
– e.g., variants of Newton’s method (e.g., Levenberg Marquart)

CSE 576, Spring 2008 Projective Geometry 51

Alternative:  multi-plane calibration  

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
• Only requires a plane
• Don’t have to know positions/orientations
• Good code available online!

– Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

– Matlab version by Jean-Yves Bouget:  
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

– Zhengyou Zhang’s web site:  http://research.microsoft.com/~zhang/Calib/
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Some Related Techniques
Image-Based Modeling and Photo Editing

• Mok et al., SIGGRAPH 2001
• http://graphics.csail.mit.edu/ibedit/

Single View Modeling of Free-Form Scenes
• Zhang et al., CVPR 2001
• http://grail.cs.washington.edu/projects/svm/

Tour Into The Picture
• Anjyo et al., SIGGRAPH 1997
• http://koigakubo.hitachi.co.jp/little/DL_TipE.html


