

Projective geometry

Readings

Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1 - 23.5, 23.10) - available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

CSE 576, Spring 2008

3

Projective geometry—what's it good for?

Uses of projective geometry

- Drawing
- Measurements
- · Mathematics for projection
- Undistorting images
- · Focus of expansion
- · Camera pose estimation, match move
- · Object recognition

Applications of projective geometry

CSE 576, Spring 2008

Projective Geometry

Measurements on planes

Image rectification

To unwarp (rectify) an image

- solve for homography **H** given **p** and **p**'
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of H
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for H?

CSE 576, Spring 2008

Projective Geometry

work out on Board

5

Solving for homographies

$$\begin{bmatrix} x_i'\\ y_i'\\ 1 \end{bmatrix} \approx \begin{bmatrix} h_{00} & h_{01} & h_{02}\\ h_{10} & h_{11} & h_{12}\\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i\\ y_i\\ 1 \end{bmatrix}$$
$$x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}$$
$$y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}$$
$$x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$
$$y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$$
$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x_i'x_i & -x_i'y_i & -x_i' \\ 0 & 0 & 0 & x_i & y_i & 1 & -y_i'x_i & -y_i'y_i & -y_i' \end{bmatrix} \begin{bmatrix} h_{00}\\ h_{01}\\ h_{02}\\ h_{11}\\ h_{12} \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

CSE 576, Spring 2

 h_{20}

 h_{21}

 h_{22}^{--}

Projective lines

Point and line duality

What is the line I spanned by rays **p**₁ and **p**₂?

• I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$

• I is the plane normal

What is the intersection of two lines I_1 and I_2 ?

• **p** is \perp to **I**₁ and **I**₂ \Rightarrow **p** = **I**₁ \times **I**₂

Points and lines are *dual* in projective space

• given any formula, can switch the meanings of points and 2 lines to get another formula

Ideal points and lines

Ideal point ("point at infinity")

- $p \cong (x, y, 0)$ parallel to image plane
- It has infinite image coordinates

Ideal line

- $I \cong (a, b, 0)$ parallel to image plane
- Corresponds to a line in the image (finite coordinates)
 goes through image origin (*principle point*)

Homographies of points and lines

Computed by 3x3 matrix multiplication

- To transform a point: **p' = Hp**
- To transform a line: $\textbf{lp=0} \rightarrow \textbf{l'p'=0}$
 - $-0 = \mathbf{I}\mathbf{p} = \mathbf{I}\mathbf{H}^{-1}\mathbf{H}\mathbf{p} = \mathbf{I}\mathbf{H}^{-1}\mathbf{p}' \Rightarrow \mathbf{I}' = \mathbf{I}\mathbf{H}^{-1}$
 - lines are transformed by postmultiplication of $H^{\text{-}1}$

CSE 576, Spring 2008

Projective Geometry

3D projective geometry

These concepts generalize naturally to 3D

- Homogeneous coordinates
 - Projective 3D points have four coords: $\mathbf{P} = (X, Y, Z, W)$
- Duality
 - A plane N is also represented by a 4-vector
 - Points and planes are dual in 3D: N P=0
- Projective transformations
 - Represented by 4x4 matrices T: P' = TP, N' = N T⁻¹

3D to 2D: "perspective" projection

Matrix Projection:

What is not preserved under perspective projection?

What IS preserved?

Vanishing lines

Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of vanishing points from lines on the same plane is the *vanishing line*
 - For the ground plane, this is called the *horizon*

19

Vanishing lines

Multiple Vanishing Points

• Different planes define different vanishing lines

Computing the horizon

Properties

- I is intersection of horizontal plane through C with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as ${\bf C}$ project to ${\bf I}$
 - points higher than C project above I
- Provides way of comparing height of objects in the scene

CSE 576, Spring 2008

Projective Geometry

Fun with vanishing points Perspective cues Illusions @1997 Sher ard CSE 576, Spring 2008 CSE 576, Spring 2008 Projective Geometry 25 Projective Geometry 26 Perspective cues

Perspective cues

Projective Geometry

Intersect p_1q_1 with p_2q_2

$v = (p_1 \times q_1) \times (p_2 \times q_2)$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this: - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

31

Measuring height without a ruler

Compute Z from image measurements

· Need more than vanishing points to do this

5.4

Camera height

The cross ratio

A Projective Invariant

- Something that does not change under projective transformations (including perspective projection)
- The cross-ratio of 4 collinear points

Measuring height $\frac{\left\|\mathbf{T}-\mathbf{B}\right\|\left\|\infty-\mathbf{R}\right\|}{\left\|\mathbf{R}-\mathbf{B}\right\|\left\|\infty-\mathbf{T}\right\|}$ $=\frac{H}{R}$ scene cross ratio T (top of object) $\frac{\|\mathbf{t} - \mathbf{b}\| \|\mathbf{v}_{Z} - \mathbf{r}\|}{\|\mathbf{r} - \mathbf{b}\| \|\mathbf{v}_{Z} - \mathbf{t}\|} = \frac{H}{R}$ **R** (reference point) Η image cross ratio B (bottom of object) ground plane X $\mathbf{aS} \quad \mathbf{P} = \begin{bmatrix} Y \\ Z \\ Projective Geometry \\ 1 \end{bmatrix}$ scene points represented as P =image points as $\mathbf{p} = |y|$ 1 CSE 576, Spring 2008 34

Camera calibration

Goal: estimate the camera parameters

• Version 1: solve for projection matrix

$$\mathbf{X} = \begin{bmatrix} wX\\ wy\\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} X\\ Y\\ Z\\ 1 \end{bmatrix} = \mathbf{\Pi}\mathbf{X}$$

- Version 2: solve for camera parameters separately
 - intrinsics (focal length, principle point, pixel size)
 - extrinsics (rotation angles, translation)
 - radial distortion

Vanishing points and projection matrix

- $\boldsymbol{\pi}_1 = \boldsymbol{\Pi} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T = \boldsymbol{v}_x$ (X vanishing point)
- similarly, $\boldsymbol{\pi}_2 = \boldsymbol{v}_Y, \ \boldsymbol{\pi}_3 = \boldsymbol{v}_Z$
- $\boldsymbol{\pi}_4 = \boldsymbol{\Pi} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ = projection of world origin

 $\boldsymbol{\Pi} = \begin{bmatrix} \mathbf{v}_X & \mathbf{v}_Y & \mathbf{v}_Z & \mathbf{0} \end{bmatrix}$

Not So Fast! We only know $\boldsymbol{v}\mbox{'s}$ and $\boldsymbol{o}\mbox{ up to a scale factor}$

$$\mathbf{\Pi} = \begin{bmatrix} a \, \mathbf{v}_X & b \mathbf{v}_Y & c \mathbf{v}_Z & d \mathbf{o} \end{bmatrix}$$

Need a bit more work to get these scale factors...

Finding the scale factors...

Let's assume that the camera is reasonable

- Square pixels
- Image plane parallel to sensor plane
- Principal point in the center of the image

$$\mathbf{\Pi} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/f \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_1 \\ 0 & 1 & 0 & t_2 \\ 0 & 0 & 1 & t_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} r_{11} & r_{12} & r_{13} & t'_1 \\ r_{21} & r_{22} & r_{23} & t'_2 \\ r_{31} / f & r_{32} / f & r_{33} / f & t'_3 / f \end{bmatrix}$$
$$\begin{bmatrix} t'_1 \\ t'_2 \\ t'_3 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \\ t'_3 \end{bmatrix}$$
$$= \begin{bmatrix} a \mathbf{V}_X & b \mathbf{V}_Y & c \mathbf{V}_Z & d \mathbf{0} \end{bmatrix}$$
CSE 576, Spring 2008 Projective Geometry

Solving for a, b, and c

$$\begin{bmatrix} v_{x1}/f & v_{y1}/f & v_{z1}/f & o_{1}/f \\ v_{x2}/f & v_{y2}/f & v_{z2}/f & o_{2}/f \\ v_{x3} & v_{y3} & v_{z3} & o_{3} \end{bmatrix} = \begin{bmatrix} r_{11}/a & r_{12}/b & r_{13}/c & t'_{1}/d \\ r_{21}/a & r_{22}/b & r_{23}/c & t'_{2}/d \\ r_{31}/a & r_{32}/b & r_{33}/c & t'_{3}/d \end{bmatrix}$$

Norm
= 1/a = 1/a

Solve for a, b, c

- Divide the first two rows by f, now that it is known
- Now just find the norms of the first three columns
- Once we know a, b, and c, that also determines R

How about d?

• Need a reference point in the scene

CSE 576, Spring 2008

Projective Geometry

43

41

Solving for f

Solving for d

$$\begin{bmatrix} wu\\ wv\\ w \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t'_{1}/d \\ r_{21} & r_{22} & r_{23} & t'_{2}/d \\ r_{31} & r_{32} & r_{33} & t'_{3}/d \end{bmatrix} \begin{bmatrix} 0\\ 0\\ H\\ 1 \end{bmatrix}$$

Suppose we have one reference height H

- E.g., we known that (0, 0, H) gets mapped to (u, v)

$$u = \frac{r_{13}H + t'_{1}/d}{r_{33}H + t'_{3}/d} \qquad \qquad d = \frac{t'_{1} - ut'_{3}}{ur_{33}H - r_{13}H}$$

Finally, we can solve for t

$\begin{bmatrix} t_1 \end{bmatrix}$		r_{11}	r_{12}	r_{13}	$\begin{bmatrix} t'_1 \\ t'_2 \\ t'_3 \end{bmatrix}$
t_2	=	r_{21}	<i>r</i> ₂₂	r ₂₃	t'2
$\lfloor t_3 \rfloor$		r_{31}	r_{32}	r ₃₃	$\begin{bmatrix} t'_3 \end{bmatrix}$

Projective Geometry

Calibration using a reference object

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

Issues

- must know geometry very accurately
- must know 3D->2D correspondence

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

CSE 576, Spring 2008

Projective Geometry

Estimating the projection matrix

Place a known object in the scene

- · identify correspondence between image and scene
- compute mapping from scene to image

Direct linear calibration

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$
$$u_i = \frac{m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}}$$
$$v_i = \frac{m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}}$$

 $u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$ $v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$

$$\begin{bmatrix} X_{i} & Y_{i} & Z_{i} & 1 & 0 & 0 & 0 & -u_{i}X_{i} & -u_{i}Y_{i} & -u_{i}Z_{i} & -u_{i} \\ 0 & 0 & 0 & 0 & X_{i} & Y_{i} & Z_{i} & 1 & -v_{i}X_{i} & -v_{i}Y_{i} & -v_{i}Z_{i} & -v_{i} \end{bmatrix} \begin{bmatrix} m_{00} \\ m_{01} \\ m_{02} \\ m_{03} \\ m_{11} \\ m_{12} \\ m_{32} \\ m_{23} \\ m_{23} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
CSE 576, Spring 2C

47

48

Direct linear calibration

Alternative: multi-plane calibration

Images courtesy Jean-Yves Bouquet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opency/ _
 - Matlab version by Jean-Yves Bouget: _ http://www.vision.caltech.edu/bouqueti/calib_doc/index.html
 - Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/ _

Some Related Techniques

Image-Based Modeling and Photo Editing

• Mok et al., SIGGRAPH 2001

Direct linear calibration

http://graphics.csail.mit.edu/ibedit/

Single View Modeling of Free-Form Scenes

- Zhang et al., CVPR 2001
- http://grail.cs.washington.edu/projects/svm/

Tour Into The Picture

- Anjyo et al., SIGGRAPH 1997
- http://koigakubo.hitachi.co.jp/little/DL TipE.html