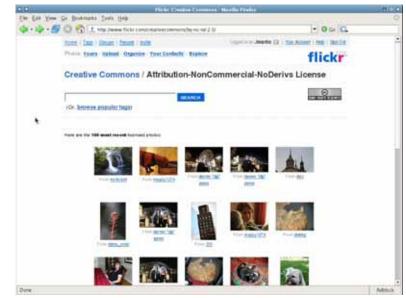
Photo Tourism: Exploring Photo Collections in 3D

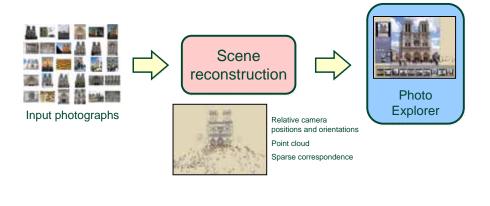
Noah Snavely Steven M. Seitz University of Washington Richard Szeliski Microsoft Research

© 2006 Noah Snavely


15,464

37,383

76,389



Reproduced with permission of Yahoo! Inc. © 2005 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

Photo Tourism

Photo Tourism overview

Related work

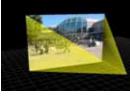
• Image-based modeling

Debevec, et al. SIGGRAPH 1996

Schaffalitzky and Zisserman ECCV 2002

Brown and Lowe 3DIM 2005

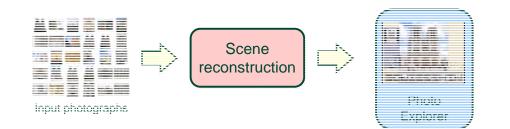
Aspen Movie Map Lippman, et al., 1978


Gortler, et al, SIGGRAPH 1996 Seitz and Dyer, SIGGRAPH 1996 Aliaga, et al, SIGGRAPH 2001 and many others

Related work

Image browsing

Toyama, et al, Int. Conf. Multimedia, 2003



Sivic and Zisserman ICCV 2003

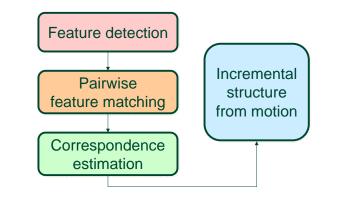

McCurdy and Griswold Mobisys 2003

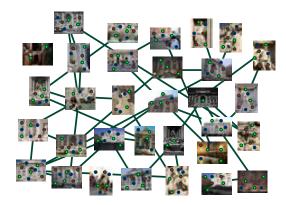
Photo Tourism overview

Scene reconstruction

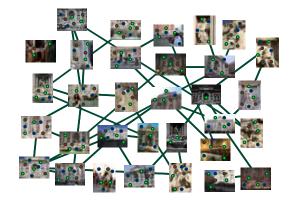
- Automatically estimate
 - position, orientation, and focal length of cameras
 - 3D positions of feature points

Feature detection

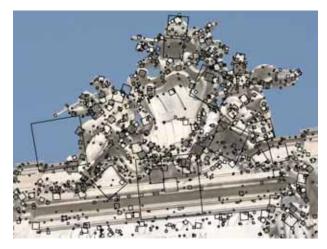
Detect features using SIFT [Lowe, IJCV 2004]


Feature detection

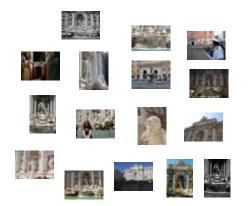
Detect features using SIFT [Lowe, IJCV 2004]


Pairwise feature matching

• Match features between each pair of images


Pairwise feature matching

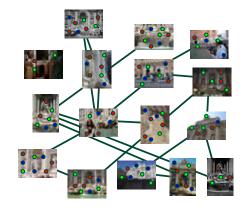
• Refine matching using RANSAC [Fischler & Bolles 1987] to estimate fundamental matrices between pairs


Feature detection

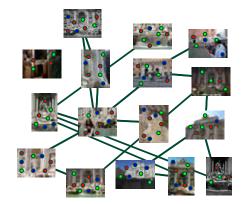
Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]


Feature detection

Detect features using SIFT [Lowe, IJCV 2004]


Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987] to estimate fundamental matrices between pairs

Correspondence estimation

• Link up pairwise matches to form connected components of matches across several images

Image 2

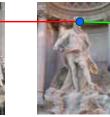


Image 3

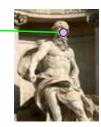
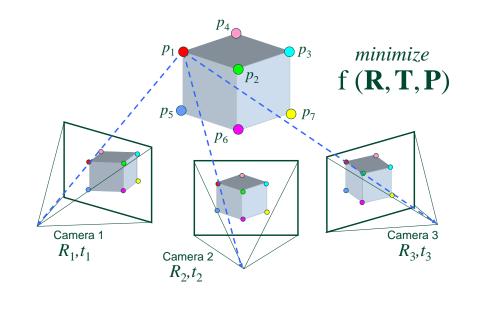
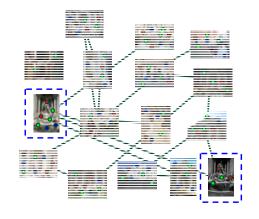



Image 1

Image 4

Structure from motion

Incremental structure from motion


Incremental structure from motion

Incremental structure from motion

Incremental structure from motion

Incremental structure from motion

Incremental structure from motion

Reconstruction performance

- For photo sets from the Internet, 20% to 75% of the photos were registered
- Most unregistered photos belonged to different connected components

• Running time: < 1 hour for 80 photos

> 1 week for 2600 photo

Photo Tourism overview

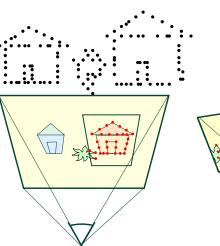
Photo Explorer

Demo

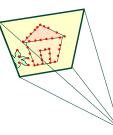
Photo Tourism overview

- Navigation
- Rendering
- Annotations

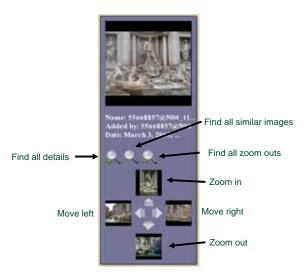
Navigation controls


- Free-flight navigation
- Object-based browsing
- Relation-based browsing
- Overhead map

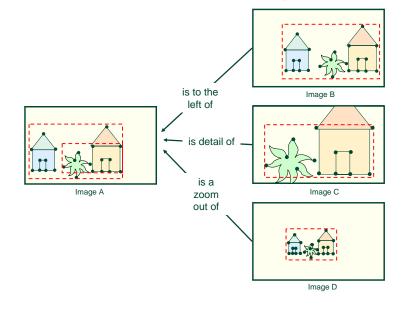
Object-based browsing



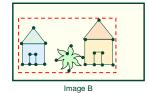
Object-based browsing



- Resolution
- Head-on view


Relation-based browsing

Relation-based browsing


Relation-based browsing

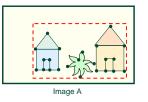
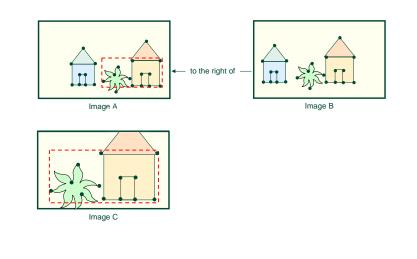
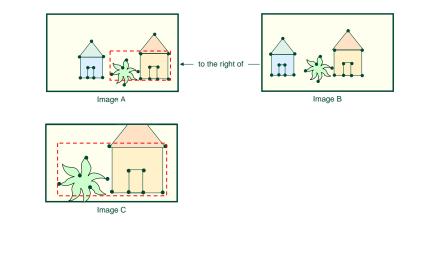
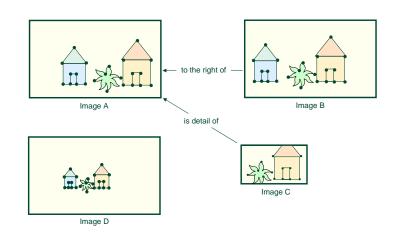

Relation-based browsing

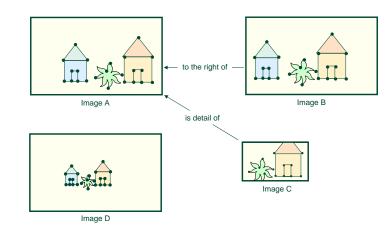
Image A

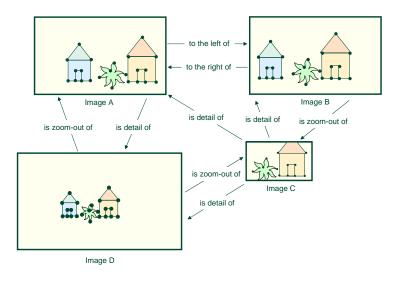


Relation-based browsing




Relation-based browsing

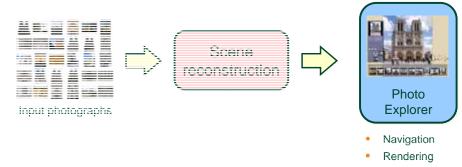

Relation-based browsing


Relation-based browsing

Relation-based browsing

Relation-based browsing

Overhead map



Prague Old Town Square

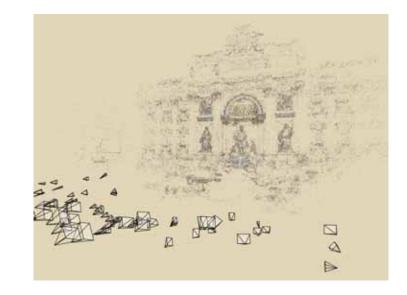


Photo Tourism overview

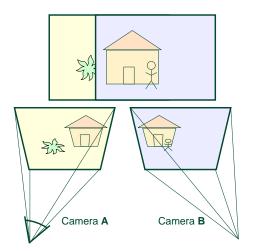
Annotations

Rendering

Rendering

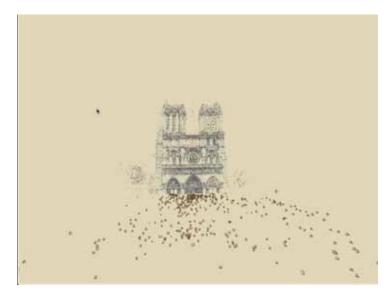
Rendering

Rendering transitions


Rendering transitions

Rendering transitions

Rendering transitions


Photo Tourism overview

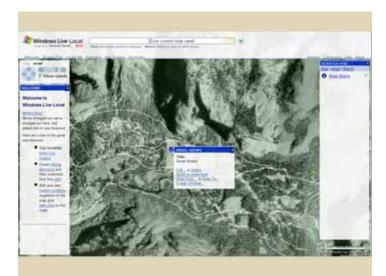

- Navigation
- Rendering
- Annotations

Annotations

Annotations

Reproduced with permission of Yahoo! Inc. \otimes 2005 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

Annotations



Yosemite

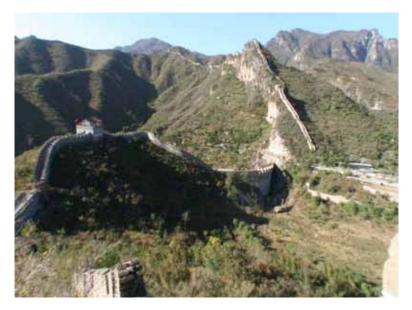
Yosemite

Topographic data courtesy USGS

Contributions

- Automated system for registering photo collections in 3D for interactive exploration
- Structure from motion algorithm demonstrated on hundreds of photos from the Internet
- Photo exploration system combining new imagebased rendering and photo navigation techniques

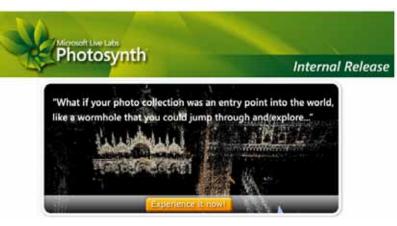
Limitations / Future work


Not all photos can be reliably matched

• Structure from motion scalability

→ More ns • Plane-base

Limitations / Future work


Limitations / Future work

- Not all photos can be reliably matched
 - \rightarrow Better feature detection / matching
 - \rightarrow Integrating GPS & other localization info.
- Structure from motion scalability
 - \rightarrow More efficient (sparse) algorithms
- Plane-based transitions lack parallax
 - \rightarrow Richer transitions
- Photo explorer scalability...

Future work

- Photo explorer scalability
 - Design client-server architecture for streaming images and geometry at required resolution
 - Scale to all of the world's photos (and videos...)
 - *Photosynth* project at Microsoft Live Labs (live demo)

Photosynth

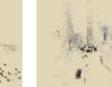
Future work

- Photo explorer scalability
 - Scale to all of the world's photos (and videos...)
 - Computational complexity: avoid matching all images to all other images
 - vocabulary trees [Nister]
 - graphical models, nested dissection [Dellaert]
 - serendipitous (?) probabilistic inference

Acknowledgements

- National Science Foundation
- Achievement Rewards for College Scientists (ARCS)
- The many people who allowed use of their photos
- UW GRAIL Lab
- MSR Interactive Visual Media Lab
- Kevin Chiu and Andy Hou for writing the Java applet

Conclusion


Indexing the world's photos in 3D provides a new way to share and experience our world

To find out more:

- http://phototour.cs.washington.edu
- http://research.microsoft.com/IVM/PhotoTourism
- http://labs.live.com/photosynth

Saint Basil's Cathedral

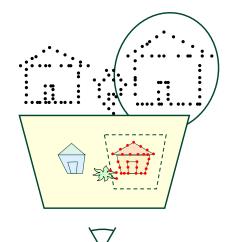
Square Rockefeller Center

Mount Rushmore

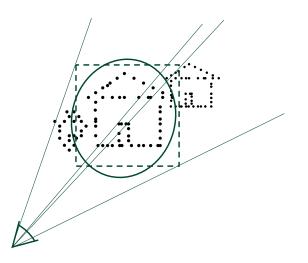
Statistics

Dataset	# input	# registered
Trevi Fountain	466	360
Yosemite	325	1,893
Notre Dame	597	2,635
Prague	197	235
Great Wall	82	120
Trafalgar Square	278	1,893

Reconstruction running time


- Great Wall: 82 / 120 photos registered Running time: ~ 3 hours
- Notre Dame: 597 / 2,635 photos registered

Running time: ~ 2 weeks


Future work

- Incorporate other metadata (e.g., time, photographer) and media (e.g., panoramas, video)
- Enhanced morphing
- Scale up structure from motion algorithm

Visibility

Visibility

Advantages of 3D over 2D

- 3D geometry has multi-image consistency
- Can annotate point cloud directly
- Can import annotations from georeferenced sources (e.g., landmark databases)
- Can use depth as cue for rejecting outliers in selection

Post-processing the reconstruction

- Compute gravity direction
- Center point cloud at the origin
- Scale model to unit variance