Motion estimation

Computer Vision CSE576, Spring 2005

Richard Szeliski

Why estimate visual motion?

Visual Motion can be annoying

- Camera instabilities, jitter
- Measure it; remove it (stabilize)

Visual Motion indicates dynamics in the scene

- · Moving objects, behavior
- Track objects and analyze trajectories

Visual Motion reveals spatial layout

• Motion parallax

CSE 576, Spring 2008

Motion estimation

2

Today's lecture

Motion estimation

- image warping (skip: see handout)
- patch-based motion (optic flow)
- parametric (global) motion
- application: image morphing
- advanced: layered motion models

Readings

- Szeliski, R. CVAA
 - Ch. 7.1, 7.2, 7.4
- Bergen et al. Hierarchical model-based motion estimation. ECCV'92, pp. 237–252.
- Shi, J. and Tomasi, C. (1994). Good features to track. In CVPR'94, pp. 593–600.
- Baker, S. and Matthews, I. (2004). Lucaskanade 20 years on: A unifying framework. IJCV, 56(3), 221–255.

3

CSE 576, Spring 2008

Image Warping

7

Parametric (global) warping

Examples of parametric warps:

translation

aspect

cylindrical

affine CSE 576, Spring 2008

Motion estimation

CSE 576, Spring 2008

Motion estimation

2D coordinate transformations

translation:	x' = x + t	$\boldsymbol{x} = (x, y)$		
rotation:	x' = R x + t			
similarity:	x' = s R x + t			
affine:	x' = A x + t			
perspective:	<u>x</u> ' ≅ H <u>x</u>	$\underline{x} = (x, y, 1)$		
(<u>x</u> is a <i>homogeneous</i> coordinate)				

These all form a nested group (closed w/ inv.)

Motion estimation

Image Warping

Given a coordinate transform x' = h(x) and a source image f(x), how do we compute a transformed image g(x') = f(h(x))?

Forward Warping

- Send each pixel f(x) to its corresponding location x' = h(x) in g(x')
- What if pixel lands "between" two pixels?

CSE 576, Spring 2008

CSE 576, Spring 2008

Motion estimation

11

9

Forward Warping

- Send each pixel f(x) to its corresponding location x' = h(x) in g(x')
- What if pixel lands "between" two pixels?
- Answer: add "contribution" to several pixels, normalize later (*splatting*)

CSE 576, Spring 2008

Motion estimation

Inverse Warping

- Get each pixel g(x') from its corresponding location $x = h^{-1}(x')$ in f(x)
- What if pixel comes from "between" two pixels?

CSE 576, Spring 2008

Motion estimation

13

Inverse Warping

- Get each pixel g(x') from its corresponding location $x = h^{-1}(x')$ in f(x)
- What if pixel comes from "between" two pixels?
- Answer: resample color value from interpolated (prefiltered) source image

CSE 576, Spring 2008

Motion estimation

14

Interpolation

Possible interpolation filters:

- nearest neighbor
- bilinear
- bicubic (interpolating)
- sinc / FIR

Needed to prevent "jaggies" and "texture crawl" (see demo)

Prefiltering

Essential for *downsampling* (*decimation*) to prevent *aliasing*

MIP-mapping [Williams'83]:

- 1. build pyramid (but what decimation filter?):
 - block averaging
- Burt & Adelson (5-tap binomial)
- 7-tap wavelet-based filter (better)
- 2. *trilinear* interpolation
 - bilinear within each 2 adjacent levels
 - linear blend between levels (determined by pixel size)

Prefiltering

Essential for *downsampling* (*decimation*) to prevent *aliasing* Other possibilities: • summed area tables • elliptically weighted Gaussians (EWA) [Heckbert'86]

17

Classes of Techniques

Feature-based methods

· Extract visual features (corners, textured areas) and track them

Motion estimation

- Sparse motion fields, but possibly robust tracking
- Suitable especially when image motion is large (10s of pixels)

Direct-methods

CSE 576, Spring 2008

- Directly recover image motion from spatio-temporal image brightness variations
- Global motion parameters directly recovered without an intermediate feature motion calculation
- Dense motion fields, but more sensitive to appearance variations
- Suitable for video and when image motion is small (< 10 pixels)

CSE 576, Spring 2008

Patch matching (revisited)

How do we determine correspondences?

• block matching or SSD (sum squared differences)

$$E(x, y; d) = \sum_{(x', y') \in N(x, y)} [I_L(x' + d, y') - I_R(x', y')]^2$$

Motion estimation

Gradient Constraint (or the **Optical Flow Constraint)** The Brightness Constraint **Brightness Constancy Equation:** $E(u,v) = (I_x \cdot u + I_y \cdot v + I_t)^2$ $J(x, y) \approx I(x + u(x, y), y + v(x, y))$ **Minimizing:** $\frac{\partial E}{\partial u} = \frac{\partial E}{\partial v} = 0$ Or, equivalently, minimize : $E(u, v) = (J(x, v) - I(x + u, v + v))^{2}$ $I_x(I_x u + I_y v + I_t) = 0$ $I_{v}(I_{x}u+I_{v}v+I_{t})=0$ Linearizing (assuming small (u, v)) using Taylor series expansion: In general $I_x, I_y \neq 0$ $J(x, y) \approx I(x, y) + \overline{I_x(x, y) \cdot u(x, y)} + \overline{I_y(x, y) \cdot v(x, y)}$ Hence, $I_x \cdot u + I_y \cdot v + I_t \approx 0$ CSE 576, Spring 2008 21 CSE 576, Spring 2008 22 Motion estimation Motion estimation

Patch Translation [Lucas-Kanade]

Assume a single velocity for all pixels within an image patch

$$E(u,v) = \sum_{x,y\in\Omega} (I_x(x,y)u + I_y(x,y)v + I_t)^2$$

Minimizing

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = -\begin{pmatrix} \sum I_x I_t \\ \sum I_y I_t \end{pmatrix}$$
$$\left(\sum \nabla I \nabla I^T \right) \vec{U} = -\sum \nabla I I_t$$

LHS: sum of the 2x2 outer product of the gradient vector

23

Local Patch Analysis

How certain are the motion estimates?

CSE 576, Spring 2008

Motion estimation

The Aperture Problem

Let
$$M = \sum (\nabla I) (\nabla I)^T$$
 and $b = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$

- Algorithm: At each pixel compute U by solving MU=b
- *M* is singular if all gradient vectors point in the same direction
 - e.g., along an edge
 - of course, trivially singular if the summation is over a single pixel or there is no texture
 - i.e., only *normal flow* is available (aperture problem)
- Corners and textured areas are OK

CSE 576, Spring 2008

```
Motion estimation
```

25

27

SSD Surface – Textured area

CSE 576, Spring 2008

SSD Surface -- Edge

SSD – homogeneous area

Mot

CSE 576, Spring 2008

Mo

26

CSE 576, Spring 2008

Iterative Refinement

Estimate velocity at each pixel using one iteration of Lucas and Kanade estimation Warp one image toward the other using the estimated flow field *(easier said than done)*

Refine estimate by repeating the process

Optical Flow: Iterative Estimation

Optical Flow: Iterative Estimation

Motion estimation

Optical Flow: Iterative Estimation

CSE 576, Spring 2008

Optical Flow: Iterative Estimation

Optical Flow: Iterative Estimation

Some Implementation Issues:

- Warping is not easy (ensure that errors in warping are smaller than the estimate refinement)
- Warp one image, take derivatives of the other so you don't need to re-compute the gradient after each iteration.
- Often useful to low-pass filter the images before motion estimation (for better derivative estimation, and linear approximations to image intensity)

CSE 576, Spring 2008

Motion estimation

34

Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity.

I.e., how do we know which 'correspondence' is correct?

Limits of the gradient method

Fails when intensity structure in window is poor
Fails when the displacement is large (typical operating range is motion of 1 pixel) *Linearization of brightness is suitable only for small displacements*Also, brightness is not strictly constant in images actually less problematic than it appears, since we can

CSE 576, Spring 2008

pre-filter images to make them look similar

Coarse-to-Fine Estimation

Parametric motion estimation

Global (parametric) motion models

<u>2D Models:</u> Affine Quadratic Planar projective transform (Homography)

<u>3D Models:</u> Instantaneous camera motion models Homography+epipole Plane+Parallax

CSE 576, Spring 2008

Motion models

2 unknowns

CSE 576, Spring 2008

6 unknowns 8 unknowns

3 unknowns

Example: Affine Motion

 $u(x, y) = a_1 + a_2 x + a_3 y$ Substituting into the B.C. Equation: $v(x, y) = a_4 + a_5 x + a_6 y$

$$I_{x}(a_{1} + Hq_{2}x + h_{3}y) + I_{y}(a_{4} + a_{5}x + a_{6}y) + I_{t} \approx 0$$

Each pixel provides 1 linear constraint in 6 global unknowns

Least Square Minimization (over all pixels):

$$Err(\vec{a}) = \sum \left[I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t \right]^2$$

CSE 576, Spring 2008

Motion estimation

42

Other 2D Motion Models

htaneous blanar motion $u = q_1 + q_2 x + q_3 y + q_7 x^2 + q_8 xy$ $v = q_4 + q_5 x + q_6 y + q_7 xy + q_8 y^2$ h + h x + h y

Projective – exact planar motion

3D Motion Models

Instantaneous camera motion:	$u = -xy\Omega_x + (1+x^2)\Omega_y - y\Omega_z + (T_x - T_z x)/Z$
Global parameters: $\Omega_X, \Omega_Y, \Omega_Z, T_X, T_Y, T_Y$	$\frac{1}{Z} v = -(1+y^2)\Omega_x + xy\Omega_y - x\Omega_z + (T_y - T_z x)/Z$
Local Parameter: $Z(x, y)$	$\int \frac{h_1 x + h_2 y + h_3 + \gamma t_1}{x' = \frac{h_1 x + h_2 x + h_3 + \gamma t_1}{x' = \frac{h_1 x + h_2 x + h_3 + \gamma t_1}{x' = \frac{h_1 x + h_2 x + h_3 + \gamma t_1}{x' = \frac{h_1 x + h_2 x + h_3 + \gamma t_1}{x' = \frac{h_1 x + h_2 x + h_3 + \gamma t_1}{x' = \frac{h_1 x + h_2 x + h_3 + \gamma t_1}{x' = h_1 x + h_2 x + h_3 + \gamma $
Homography+Epipole	$h_7 x + h_8 y + h_9 + \gamma t_3$
Global parameters: $h_1, \dots, h_9, t_1, t_2, t_3$ Local Parameter: $\gamma(x, y)$	y'= $\frac{h_4 x + h_5 y + h_6 + \gamma t_1}{h_7 x + h_8 y + h_9 + \gamma t_3}$ and : $u = x' - x$, $v = y' - y$
Residual Planar Parallax Motion Global parameters: t_1, t_2, t_3	$u = x^w - x = \frac{\gamma}{1 + \gamma t_3} (t_3 x - t_1)$
Local Parameter: $\gamma(x, y)$	$ v = y^w - x = \frac{\gamma}{1 + \gamma t_3} (t_3 y - t_2) $
CSE 576, Spring 2008 Motion es	timation 44

CSE 576, Spring 2008

Patch matching (revisited)

How do we determine correspondences?

• block matching or SSD (sum squared differences)

 $E(x, y; d) = \sum_{(x', y') \in N(x, y)} [I_L(x' + d, y') - I_R(x', y')]^2$

CSE 576, Spring 2008

Motion estimation

45

47

Correlation and SSD

For larger displacements, do template matching

- Define a small area around a pixel as the template
- Match the template against each pixel within a search area in next image.
- Use a match measure such as correlation, normalized correlation, or sum-of-squares difference
- Choose the maximum (or minimum) as the match
- Sub-pixel estimate (Lucas-Kanade)

Motion estimation

46

Discrete Search vs. Gradient Based

Consider image I translated by u_0, v_0

$$I_0(x, y) = I(x, y)$$

$$I_1(x + u_0, y + v_0) = I(x, y) + \eta_1(x, y)$$

$$E(u,v) = \sum_{x,y} (I(x, y) - I_1(x + u, y + v))^2$$

= $\sum_{x,y} (I(x, y) - I(x - u_0 + u, y - v_0 + v) - \eta_1(x, y))^2$

The discrete search method simply searches for the best estimate.

The gradient method linearizes the intensity function and solves for the estimate CSE 576, Spring 2008 Motion estimation

Shi-Tomasi feature tracker

- 1. Find good features (min eigenvalue of 2×2 Hessian)
- 2. Use Lucas-Kanade to track with pure translation
- 3. Use affine registration with first feature patch
- 4. Terminate tracks whose dissimilarity gets too large
- 5. Start new tracks when needed

Tracking results

	Figure 1: Three frame details from Woody Allen's Manhattan. The details are from the 1st, 11th, and 21st frames of a subsequence from the movie.
	25 25 25 25
	25 25 25 25 25
	Figure 2: The traffic sign windows from frames 1,6,11,16,21 as tracked (top), and warped by the computed deformation matrices (bottom).
CSE 576, Spring 20	08 Motion estimation

Tracking - dissimilarity

CSE 576, Spring 2008

Motion estimation

Tracking results

in figure 11. Notice the good discrimination between good and bad features. Dashed plots indicate aliasing

frames

Features 24 and 60 deserve a special discussion, and

Correlation Window Size

Small windows lead to more false matches

Large windows are better this way, but...

- Neighboring flow vectors will be more correlated (since the template windows have more in common)
- Flow resolution also lower (same reason)
- More expensive to compute

Small windows are good for local search: more detailed and less smooth (noisy?) Large windows good for global search:

less detailed and smoother

CSE 576, Spring 2008

Motion estimation

49

CSE 576, Spring 2008

Robust Estimation

Noise distributions are often non-Gaussian, having much heavier tails. Noise samples from the tails are called outliers.

Sources of outliers (multiple motions):

- specularities / highlights
- jpeg artifacts / interlacing / motion blur
- multiple motions (occlusion boundaries, transparency)
 velocity space

CSE 576, Spring 2008

Motion estimation

53

Robust Estimation

Standard Least Squares Estimation allows too much influence for outlying points

Robust Estimation

 $E_{d}(u_{s}, v_{s}) = \sum \rho \left(I_{x}u_{s} + I_{y}v_{s} + I_{t} \right) \text{ Robust gradient constraint}$ $E_{d}(u_{s}, v_{s}) = \sum \rho \left(I(x, y) - J(x + u_{s}, y + v_{s}) \right) \text{ Robust SSD}$

Robust Estimation

Problem: Least-squares estimators penalize deviations between data & model with quadratic error fⁿ (extremely sensitive to outliers)

error penalty function

influence function

$$\rho(\epsilon) = \epsilon^2$$
 $\psi(\epsilon) = \frac{\partial \rho(\epsilon)}{\partial \epsilon} = 2\epsilon$

Redescending error functions (e.g., Geman-McClure) help to reduce the influence of outlying measurements.

error penalty function

influence function

CSE 576, Spring 2008

Motion estimation

How well do these techniques work?

A Database and Evaluation Methodology for Optical Flow

Simon Baker, Daniel Scharstein, J.P Lewis, Stefan Roth, Michael Black, and **Richard Szeliski ICCV 2007** http://vision.middlebury.edu/flow/

Limitations of Yosemite

Limitations of Yosemite

Only sequence used for quantitative evaluation

osemitte

Coding

Image 7

Image 8

Flow Color Ground-Truth Flow

- **Current challenges:**
- Non-rigid motion
- Real sensor noise
- Complex natural scenes
- Motion discontinuities

Need more challenging and more realistic benchmarks

CSE 576, Spring 2008

Realistic synthetic imagery

- Randomly generate scenes with "trees" and "rocks"
- Significant occlusions, motion, texture, and blur
- Rendered using Mental Ray and "lens shader" plugin

Modified stereo imagery

• Recrop and resample ground-truth stereo datasets to have appropriate motion for OF

Dense flow with hidden texture

- · Paint scene with textured fluorescent paint
- Take 2 images: One in visible light, one in UV light
- Move scene in very small steps using robot
- Generate ground-truth by tracking the UV images

CSE 576, Spring 2008

Motion estimation

63

Experimental results

Algorithms:

- **Pyramid LK:** OpenCV-based implementation of Lucas-Kanade on a Gaussian pyramid
- Black and Anandan: Author's implementation
- Bruhn et al.: Our implementation
- MediaPlayer[™]: Code used for video frame-rate upsampling in Microsoft MediaPlayer
- Zitnick et al.: Author's implementation

Experimental results

Conclusions

- **Difficulty:** Data substantially more challenging than **Yosemite**
- **Diversity: S**ubstantial variation in difficulty across the various datasets
- Motion GT vs Interpolation: Best algorithms for one are not the best for the other
- **Comparison with Stereo:** Performance of existing flow algorithms appears weak

CSE 576, Spring 2008

Motion estimation

66

Image Morphing

Image Warping - non-parametric

Specify more detailed warp function

Examples:

- splines
- triangles
- optical flow (per-pixel motion)

Image Warping – non-parametric

Move control points to specify spline warp

CSE 576, Spring 2008

Motion estimation

69

Image Morphing

How can we in-between two images?

1. Cross-dissolve

(all examples from [Gomes et al.'99])

CSE 576, Spring 2008

Motion estimation

Image Morphing

How can we in-between two images?

2. Warp then cross-dissolve = *morph*

CSE 576, Spring 2008

71

Warp specification

How can we specify the warp?

- 1. Specify corresponding points
 - interpolate to a complete warping function

• Nielson, Scattered Data Modeling, IEEE CG&A'93]

CSE 576, Spring 2008

Motion estimation

72

Warp specification

How can we specify the warp?

- 2. Specify corresponding vectors
 - *interpolate* to a complete warping function

CSE 576, Spring 2008

Motion estimation

73

Warp specification

How can we specify the warp?

- 2. Specify corresponding vectors
 - interpolate [Beier & Neely, SIGGRAPH'92]

CSE 576, Spring 2008

Motion estimation

Warp specification

How can we specify the warp?

- 3. Specify corresponding spline control points
 - interpolate to a complete warping function

Final Morph Result

Layered Scene Representations

Motion representations

How can we describe this scene?

CSE 576, Spring 2008

Motion estimation

Block-based motion prediction

Break image up into square blocks Estimate translation for each block Use this to predict next frame, code difference (MPEG-2)

Layered motion

Break image sequence up into "layers":

Describe each layer's motion

CSE 576, Spring 2008

78

CSE 576, Spring 2008

Motion estimation

Layered motion

Advantages:

- can represent occlusions / disocclusions
- each layer's motion can be smooth
- video segmentation for semantic processing Difficulties:
- how do we determine the correct number?
- how do we assign pixels?
- how do we model the motion?

CSE 576, Spring 2008	Motion es

```
stimation
```

Layers for video summarization

Background scene (players removed) CSE 576, Spring 2008

Complete synopsis of the video Motion estimation

Background modeling (MPEG-4)

Convert masked images into a background sprite for layered video coding

81

What are layers?

- [Wang & Adelson, 1994]
- intensities
- alphas
- velocities

CSE 576, Spring 2008

82

Alpha map

Motion estimation

How do we composite them?

 $(1-\alpha)$

87

CSE 576, Spring 2008	Motion estimation	85

How do we form them?

How do we form them?

How do we estimate the layers?

- 1. compute coarse-to-fine flow
- 2. estimate affine motion in blocks (regression)
- 3. cluster with k-means
- assign pixels to best fitting affine region 4.
- 5. re-estimate affine motions in each region...

Motion estimation

Layer synthesis

For each layer:

stabilize the sequence with the affine motion

Motion estimation

compute median value at each pixel

Determine occlusion relationships

Bibliography

CSE 576, Spring 2008

- L. Williams. *Pyramidal parametrics*. Computer Graphics, 17(3):1--11, July 1983.
- L. G. Brown. A survey of image registration techniques. Computing Surveys, 24(4):325--376, December 1992.
- C. D. Kuglin and D. C. Hines. The phase correlation image alignment method. In IEEE 1975 Conference on Cybernetics and Society, pages 163--165, New York, September 1975.
- J. Gomes, L. Darsa, B. Costa, and L. Velho. *Warping and Morphing of Graphical Objects*. Morgan Kaufmann, 1999.
- T. Beier and S. Neely. *Feature-based image metamorphosis*. Computer Graphics (SIGGRAPH'92), 26(2):35--42, July 1992.

CSE 576, Spring 2008

91

89

Bibliography

- J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hierarchical model-based motion estimation. In ECCV'92, pp. 237–252, Italy, May 1992.
- M. J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Comp. Vis. Image Understanding, 63(1):75–104, 1996.
- Shi, J. and Tomasi, C. (1994). Good features to track. In CVPR'94, pages 593–600, IEEE Computer Society, Seattle.
- Baker, S. and Matthews, I. (2004). Lucas-kanade 20 years on: A unifying framework: Part 1: The quantity approximated, the warp update rule, and the gradient descent approximation. IJCV, 56(3), 221–255.

Bibliography

- H. S. Sawhney and S. Ayer. Compact representation of videos through dominant multiple motion estimation. IEEE Trans. Patt. Anal. Mach. Intel., 18(8):814–830, Aug. 1996.
- Y. Weiss. Smoothness in layers: Motion segmentation using nonparametric mixture estimation. In CVPR'97, pp. 520–526, June 1997.
- J. Y. A. Wang and E. H. Adelson. Representing moving images with layers. IEEE Transactions on Image Processing, 3(5):625--638, September 1994.

Bibliography

- Y. Weiss and E. H. Adelson. A unified mixture framework for motion segmentation: Incorporating spatial coherence and estimating the number of models. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'96), pages 321--326, San Francisco, California, June 1996.
- Y. Weiss. Smoothness in layers: Motion segmentation using nonparametric mixture estimation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'97), pages 520--526, San Juan, Puerto Rico, June 1997.
- P. R. Hsu, P. Anandan, and S. Peleg. Accurate computation of optical flow by using layered motion representations. In Twelfth International Conference on Pattern Recognition (ICPR'94), pages 743--746, Jerusalem, Israel, October 1994. IEEE Computer Society Press

CSE 576, Spring 2008

Motion estimation

93

CSE 576, Spring 2008

Motion estimation

Bibliography

- T. Darrell and A. Pentland. Cooperative robust estimation using layers of support. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(5):474--487, May 1995.
- S. X. Ju, M. J. Black, and A. D. Jepson. Skin and bones: Multi-layer, locally affine, optical flow and regularization with transparency. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'96), pages 307--314, San Francisco, California, June 1996.
- M. Irani, B. Rousso, and S. Peleg. Computing occluding and transparent motions. International Journal of Computer Vision, 12(1):5--16, January 1994.
- H. S. Sawhney and S. Ayer. Compact representation of videos through dominant multiple motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8):814--830, August 1996.
- M.-C. Lee et al. A layered video object coding system using sprite and affine motion model. IEEE Transactions on Circuits and Systems for Video Technology, 7(1):130--145, February 1997.

CSE 576, Spring 2008

95

Bibliography

- S. Baker, R. Szeliski, and P. Anandan. A layered approach to stereo reconstruction. In IEEE CVPR'98, pages 434--441, Santa Barbara, June 1998.
- R. Szeliski, S. Avidan, and P. Anandan. Layer extraction from multiple images containing reflections and transparency. In IEEE CVPR'2000, volume 1, pages 246--253, Hilton Head Island, June 2000.
- J. Shade, S. Gortler, L.-W. He, and R. Szeliski. Layered depth images. In Computer Graphics (SIGGRAPH'98) Proceedings, pages 231--242, Orlando, July 1998. ACM SIGGRAPH.
- S. Laveau and O. D. Faugeras. 3-d scene representation as a collection of images. In Twelfth International Conference on Pattern Recognition (ICPR'94), volume A, pages 689--691, Jerusalem, Israel, October 1994. IEEE Computer Society Press.
- P. H. S. Torr, R. Szeliski, and P. Anandan. An integrated Bayesian approach to layer extraction from image sequences. In Seventh ICCV'98, pages 983--990, Kerkyra, Greece, September 1999.