Face Recognition and Detection

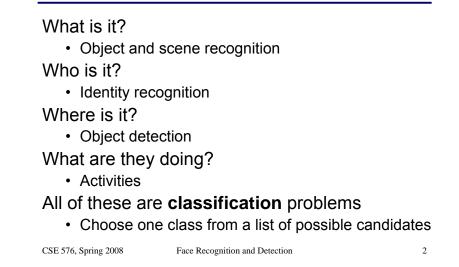
The "Margaret Thatcher Illusion", by Peter Thompson

Computer Vision CSE576, Spring 2008 Richard Szeliski

CSE 576, Spring 2008

Face Recognition and Detection

Recognition problems



What is recognition?

A different taxonomy from [Csurka et al. 2006]:

- Recognition
 - Where is this particular object?
- Categorization
 - What kind of object(s) is(are) present?
- · Content-based image retrieval
 - · Find me something that looks similar
- Detection
 - Locate all instances of a given class

CSE 576, Spring 2008

3

1

Readings

- C. Bishop, "Neural Networks for Pattern Recognition", Oxford University Press, 1998, Chapter 1.
- Forsyth and Ponce, Chap 22.3 (through 22.3.2-- eigenfaces)
- Turk, M. and Pentland, A. *Eigenfaces for* recognition. Journal of Cognitive Neuroscience, 1991
- Viola, P. A. and Jones, M. J. (2004). Robust real-time face detection. *IJCV*, 57(2), 137–154.

Sources

- Steve Seitz, CSE 455/576, previous quarters
- Fei-Fei, Fergus, Torralba, <u>CVPR'2007 course</u>
- Efros, CMU 16-721 Learning in Vision
- Freeman, MIT 6.869 Computer Vision: Learning
- Linda Shapiro, CSE 576, Spring 2007

Today's lecture

Face recognition and detection

- · color-based skin detection
- recognition: eigenfaces [Turk & Pentland] and parts [Moghaddan & Pentland]
- detection: boosting [Viola & Jones]

CSE 576	, Spring 2008	Face Recognition and Detection	5	CSE 576, Spring 2008	Face Recognition and Detection	6

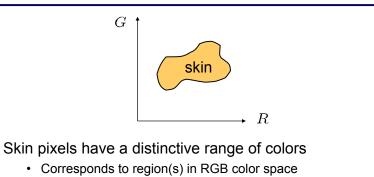
Face detection

How to tell if a face is present?

CSE 576, Spring 2008

7

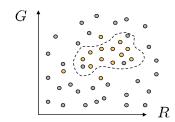
Skin detection



Skin classifier

- A pixel X = (R,G,B) is skin if it is in the skin (color) region
- · How to find this region?

Skin detection



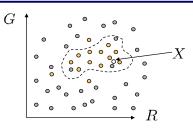
Learn the skin region from examples

- · Manually label skin/non pixels in one or more "training images"
- · Plot the training data in RGB space
 - skin pixels shown in orange, non-skin pixels shown in gray
 - some skin pixels may be outside the region, non-skin pixels inside.

9

CSE 576, Spring 2008	Face Recognition and Detection
CDE 570, 5pring 2000	ruce recognition and Detection

Skin classifier

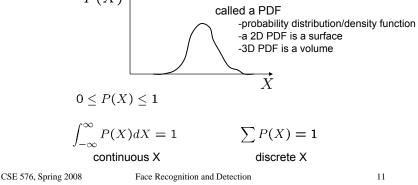


Given X = (R,G,B): how to determine if it is skin or not?

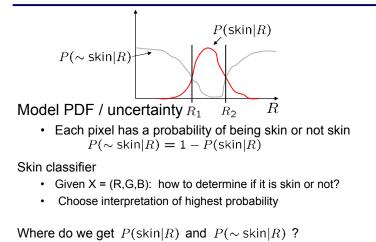
- Nearest neighbor
 - find labeled pixel closest to X
- Find plane/curve that separates the two classes
 - popular approach: Support Vector Machines (SVM)
- · Data modeling
 - fit a probability density/distribution model to each class

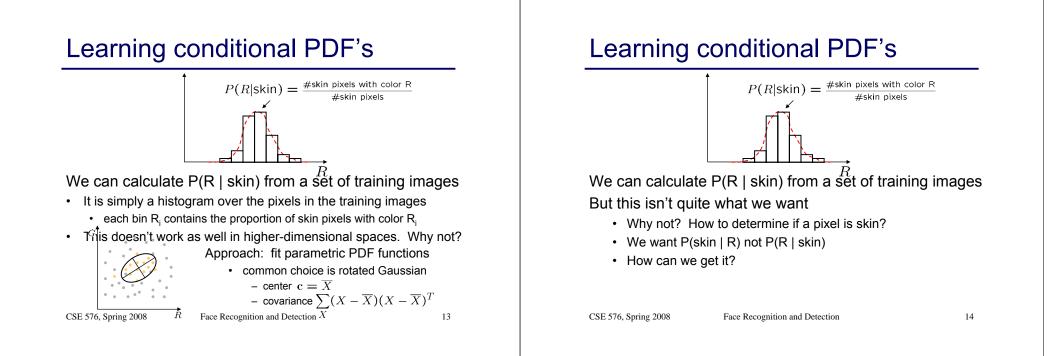
Probability

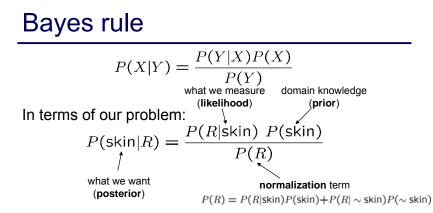
- X is a random variable
- P(X) is the probability that X achieves a certain value P(X) ↑



Probabilistic skin classification



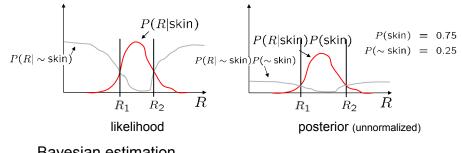




What can we use for the prior P(skin)?

- Domain knowledge:
 - P(skin) may be larger if we know the image contains a person
 - For a portrait, P(skin) may be higher for pixels in the center
- Learn the prior from the training set. How?
 - P(skin) is proportion of skin pixels in training set

Bayesian estimation



Bayesian estimation

- Goal is to choose the label (skin or ~skin) that maximizes the posterior ↔ minimizes probability of misclassification
 - this is called Maximum A Posteriori (MAP) estimation

Skin detection results

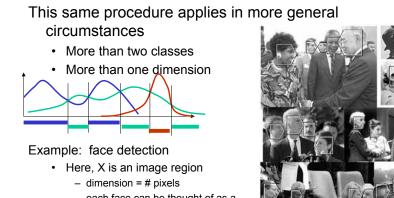
Figure 25.3. The figure shows a variety of ineque together with the output of the ship belowing of Jones and Reils applied to the image. Fronts marked histories of non-sing theory, and while new too knowned. Notice that this presence is relatively offsetime, and could vortanily and a new too knowned. Notice that this presence is relatively offsetime, and could vortanily and present to also discussion." M.J. Bores and J. Mola, Proc. Dampater Known and Pattern Broughtations, 1997;57:1908, IEEE

CSE 576, Spring 2008

Face Recognition and Detection

17

General classification



 each face can be thought of as a point in a high dimensional space

CSE 576, Spring 2008

Face Recognition and I H. Schneiderman, T. Kanade. "A Statistical Method for 3D Object Detection Applied to Faces and Cars". CVPR 2000

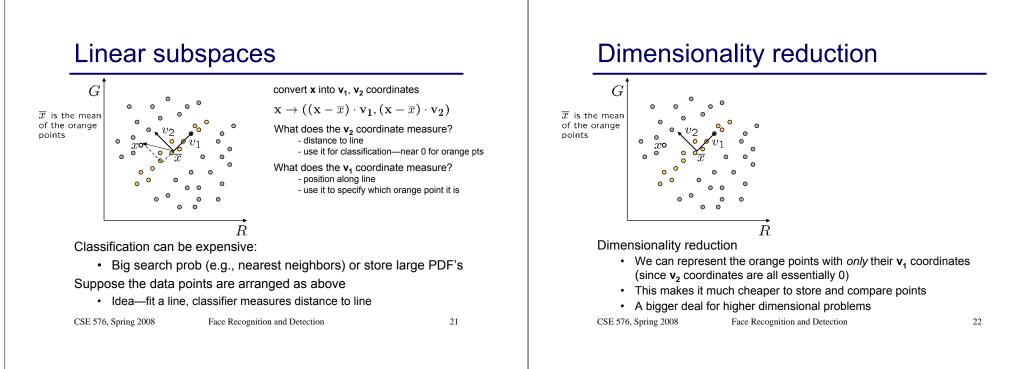
Today's lecture

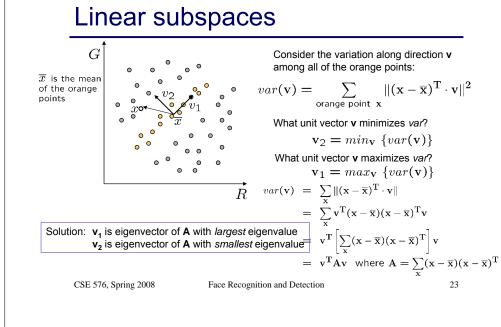
Face recognition and detection

- · color-based skin detection
- recognition: eigenfaces [Turk & Pentland] and parts [Moghaddan & Pentland]
- · detection: boosting [Viola & Jones]

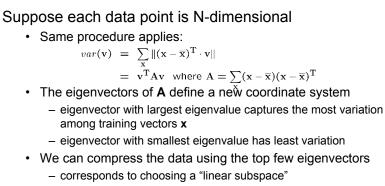
Eigenfaces for recognition

Matthew Turk and Alex Pentland J. Cognitive Neuroscience 1991



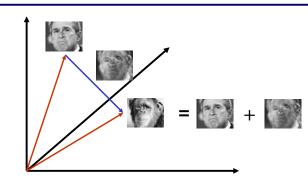


Principal component analysis



- » represent points on a line, plane, or "hyper-plane"
- these eigenvectors are known as the principal components

The space of faces



An image is a point in a high dimensional space

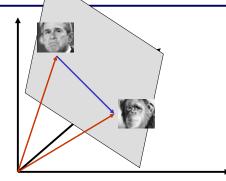
- An N x M image is a point in $\mathsf{R}^{\mathsf{N}\mathsf{M}}$

• We can define vectors in this space as we did in the 2D case

CSE 576, Spring 2008

Face Recognition and Detection

Dimensionality reduction



The set of faces is a "subspace" of the set of images

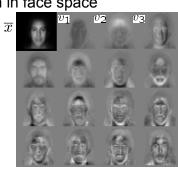
- · We can find the best subspace using PCA
- This is like fitting a "hyper-plane" to the set of faces
 - spanned by vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_K$
 - any face $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_k \mathbf{v}_k$

Eigenfaces

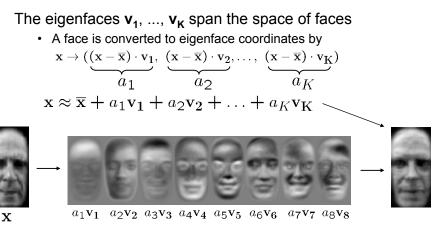
PCA extracts the eigenvectors of A

- Gives a set of vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$, ...
- · Each vector is a direction in face space

– what do these look like?



Projecting onto the eigenfaces



CSE 576, Spring 2008

Face Recognition and Detection

27

25

CSE 576, Spring 2008

Recognition with eigenfaces

Algorithm

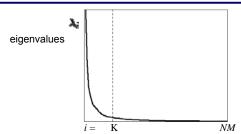
- 1. Process the image database (set of images with labels)
 - Run PCA—compute eigenfaces
 - · Calculate the K coefficients for each image
- 2. Given a new image (to be recognized) x, calculate K coefficients
- $\mathbf{x}
 ightarrow (a_1, a_2, \dots, a_K)$ 3. Detect if x is a face
- - $\|\mathbf{x} (\overline{\mathbf{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \mathsf{threshold}$
- 4. If it is a face, who is it?
 - Find closest labeled face in database
 - » nearest-neighbor in K-dimensional space

CSE 576, Spring 2008

Face Recognition and Detection

29

Choosing the dimension K



How many eigenfaces to use?

Look at the decay of the eigenvalues

- · the eigenvalue tells you the amount of variance "in the direction" of that eigenface
- ignore eigenfaces with low variance

CSE 576, Spring 2008

Face Recognition and Detection

View-Based and Modular **Eigenspaces for Face Recognition**

Alex Pentland, Baback Moghaddam and Thad Starner CVPR'94

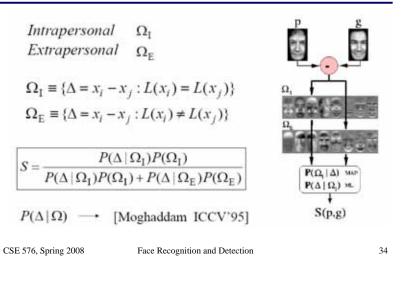
Part-based eigenfeatures

Learn a separate eigenspace for each face feature Boosts performance of regular eigenfaces

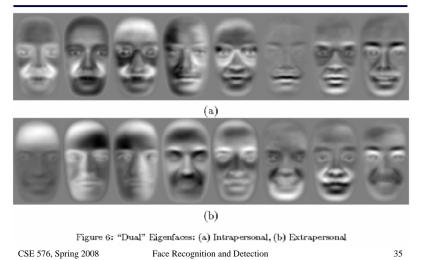
30

Baback Moghaddam, Tony Jebara and Alex Pentland *Pattern Recognition* 33(11), 1771-1782, November 2000 (slides from Bill Freeman, MIT 6.869, April 2005)

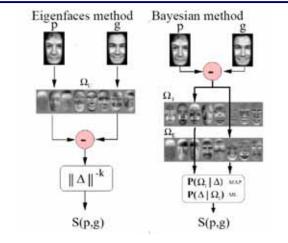
Bayesian Face Recognition



Bayesian Face Recognition



Bayesian Face Recognition



CSE 576, Spring 2008

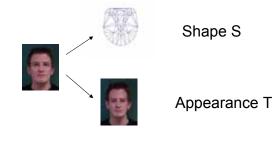
Face Recognition and Detection

Morphable Face Models

Rowland and Perrett '95 Lanitis, Cootes, and Taylor '95, '97 Blanz and Vetter '99 Matthews and Baker '04, '07

Morphable Face Model

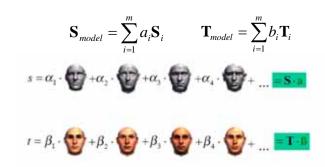
Use subspace to model elastic 2D or 3D shape variation (vertex positions), in addition to appearance variation



CSE 576, Spring 2008

Face Recognition and Detection

Morphable Face Model



3D models from Blanz and Vetter '99

CSE 576, Spring 2008

39

Face Recognition Resources

Face Recognition Home Page:

http://www.cs.rug.nl/~peterkr/FACE/face.html

PAMI Special Issue on Face & Gesture (July '97) FERET

http://www.dodcounterdrug.com/facialrecognition/Feret/feret.htm

Face-Recognition Vendor Test (FRVT 2000)

http://www.dodcounterdrug.com/facialrecognition/FRVT2000/frvt2000.htm

Biometrics Consortium

http://www.biometrics.org

40

38

Today's lecture

CSE 576, Spring 2008

Face recognition and detection

- · color-based skin detection
- recognition: eigenfaces [Turk & Pentland] and parts [Moghaddan & Pentland]
- detection: boosting [Viola & Jones]

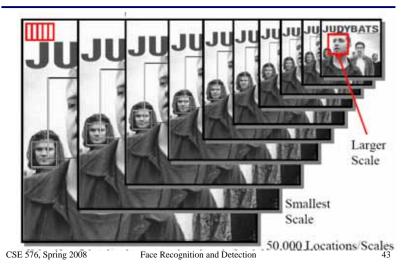
Robust real-time face detection

Paul A. Viola and Michael J. Jones Intl. J. Computer Vision 57(2), 137–154, 2004 (originally in CVPR'2001) (slides adapted from Bill Freeman, MIT 6.869, April 2005)

Scan classifier over locs. & scales

Face Recognition and Detection

41



"Learn" classifier from data

Training Data

- 5000 faces (frontal)
- 10⁸ non faces
- Faces are normalized
- Scale, translation

Many variations

- Across individuals
- Illumination
- Pose (rotation both in plane and out) CSE 576, Spring 2008 Face Recognition and Detection

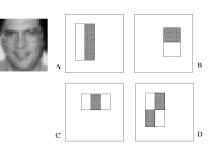
Characteristics of algorithm

- Feature set (...is huge about 16M features)
- Efficient feature selection using AdaBoost
- · New image representation: Integral Image
- Cascaded Classifier for rapid detection
- Fastest known face detector for gray scale images

Face Recognition and Detection

Image features

- "Rectangle filters"
 - Similar to Haar wavelet
- Differences between sums of pixels in adjacent rectangles



 $h_{t}(x) = \begin{cases} +1 & \text{if } f_{t}(x) > \theta_{t} \\ -1 & \text{otherwise} \end{cases}$



CSE 576, Spring 2008

46

Integral Image

CSE 576, Spring 2008

Partial sum $I'(x, y) = \sum_{\substack{x' \le x \\ y' \le y}} I(x', y')$ Any rectangle is D = 1+4-(2+3)

Also known as:

- summed area tables [Crow84]
- boxlets [Simard98]

CSE 576, Spring 2008

(x,y)

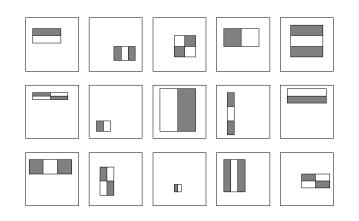
B

D

С

45

Huge library of filters



Face Recognition and Detection

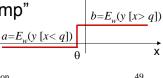
Constructing the classifier

Perceptron yields a sufficiently powerful classifier

 $C(x) = \theta \left(\sum_{i} \alpha_{i} h_{i}(x) + b \right)$

Use AdaBoost to efficiently choose best features

- add a new $h_i(x)$ at each round
- each h_i(x_k) is a "decision stump"



 $h_i(x)$

CSE 576, Spring 2008

Face Recognition and Detection

Good reference on boosting

Friedman, J., Hastie, T. and Tibshirani, R. Additive Logistic Regression: a Statistical View of Boosting

http://www-stat.stanford.edu/~hastie/Papers/boost.ps

"We show that boosting fits an additive logistic regression model by stagewise optimization of a criterion very similar to the log-likelihood, and present likelihood based alternatives. We also propose a multi-logit boosting procedure which appears to have advantages over other methods proposed so far."

CSE 576, Spring 2008 Face Recognition and Detection

Constructing the classifier

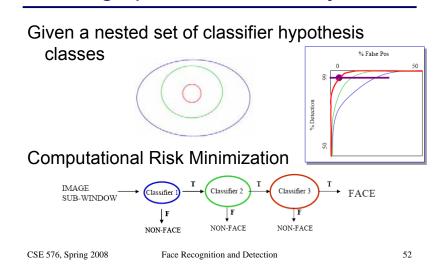
For each round of boosting:

- Evaluate each rectangle filter on each example
- · Sort examples by filter values
- Select best threshold for each filter (min error)
 - Use sorting to quickly scan for optimal threshold
- · Select best filter/threshold combination
- Weight is a simple function of error rate
- Reweight examples
 - (There are many tricks to make this more efficient.)
- CSE 576, Spring 2008

Face Recognition and Detection

50

Trading speed for accuracy

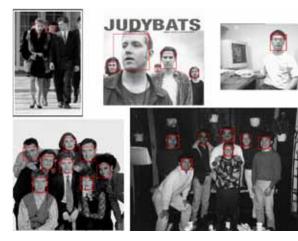


Speed of face detector (2001)

- Speed is proportional to the average number of features computed per sub-window.
- On the MIT+CMU test set, an average of 9 features (/ 6061) are computed per sub-window.
- On a 700 Mhz Pentium III, a 384x288 pixel image takes about 0.067 seconds to process (15 fps).
- Roughly 15 times faster than Rowley-Baluja-Kanade and 600 times faster than Schneiderman-Kanade.

CSE 576, Spring 2008	Face Recognition and Detection

Sample results



CSE 576, Spring 2008

Face Recognition and Detection

Summary (Viola-Jones)

- · Fastest known face detector for gray images
- Three contributions with broad applicability:
 Cascaded classifier yields rapid
 - classification
 - AdaBoost as an extremely efficient feature selector
 - Rectangle Features + Integral Image can be used for rapid image analysis

Face detector comparison

Informal study by Andrew Gallagher, CMU, for <u>CMU 16-721</u> Learning-Based Methods in Vision, Spring 2007

- The Viola Jones algorithm OpenCV implementation was used. (<2 sec per image).
- For Schneiderman and Kanade, Object Detection Using the Statistics of Parts [IJCV'04], the <u>www.pittpatt.com</u> demo was used. (~10-15 seconds per image, including web transmission).

55

53

54

a s

Schneiderman Kanade

57

Today's lecture

CSE 576, Spring 2008

Face recognition and detection

- color-based skin detection
- recognition: eigenfaces [Turk & Pentland] and parts [Moghaddan & Pentland]

Face Recognition and Detection

58

• detection: boosting [Viola & Jones]

CSE	576,	Spring	200
CSE	576,	Spring	200

Questions?