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Face Recognition and Detection

The “Margaret Thatcher Illusion”, by Peter Thompson

Computer Vision
CSE576, Spring 2008

Richard Szeliski
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Recognition problems
What is it?

• Object and scene recognition
Who is it?

• Identity recognition
Where is it?

• Object detection
What are they doing?

• Activities
All of these are classification problems

• Choose one class from a list of possible candidates
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What is recognition?

A different taxonomy from [Csurka et al. 2006]:
• Recognition

• Where is this particular object?
• Categorization

• What kind of object(s) is(are) present?
• Content-based image retrieval

• Find me something that looks similar
• Detection

• Locate all instances of a given class
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Readings
• C. Bishop, “Neural Networks for Pattern 

Recognition”, Oxford University Press, 1998, 
Chapter 1. 

• Forsyth and Ponce, Chap 22.3 (through 22.3.2--
eigenfaces)

• Turk, M. and Pentland, A. Eigenfaces for 
recognition. Journal of Cognitive Neuroscience, 
1991

• Viola, P. A. and Jones, M. J. (2004). Robust 
real-time face detection. IJCV, 57(2), 137–154.
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Sources

• Steve Seitz, CSE 455/576, previous quarters
• Fei-Fei, Fergus, Torralba, CVPR’2007 course
• Efros, CMU 16-721 Learning in Vision
• Freeman, MIT 6.869 Computer Vision: Learning 
• Linda Shapiro, CSE 576, Spring 2007
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Today’s lecture

Face recognition and detection
• color-based skin detection
• recognition: eigenfaces [Turk & Pentland]

and parts [Moghaddan & Pentland]
• detection: boosting [Viola & Jones]
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Face detection

How to tell if a face is present?
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Skin detection

Skin pixels have a distinctive range of colors
• Corresponds to region(s) in RGB color space

Skin classifier
• A pixel X = (R,G,B) is skin if it is in the skin (color) region
• How to find this region?

skin
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Skin detection

Learn the skin region from examples
• Manually label skin/non pixels in one or more “training images”
• Plot the training data in RGB space

– skin pixels shown in orange, non-skin pixels shown in gray
– some skin pixels may be outside the region, non-skin pixels inside.

CSE 576, Spring 2008 Face Recognition and Detection 10

Skin classifier

Given X = (R,G,B):  how to determine if it is skin or not?
• Nearest neighbor

– find labeled pixel closest to X
• Find plane/curve that separates the two classes

– popular approach:  Support Vector Machines (SVM)
• Data modeling

– fit a probability density/distribution model to each class
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Probability
• X is a random variable
• P(X) is the probability that X achieves a certain 

value

continuous X discrete X

called a PDF
-probability distribution/density function
-a 2D PDF is a surface
-3D PDF is a volume
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Probabilistic skin classification

Model PDF / uncertainty
• Each pixel has a probability of being skin or not skin

Skin classifier
• Given X = (R,G,B):  how to determine if it is skin or not?
• Choose interpretation of highest probability

Where do we get                    and                        ? 
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Learning conditional PDF’s

We can calculate P(R | skin) from a set of training images
• It is simply a histogram over the pixels in the training images

• each bin Ri contains the proportion of skin pixels with color Ri

• This doesn’t work as well in higher-dimensional spaces.  Why not?
Approach:  fit parametric PDF functions 

• common choice is rotated Gaussian 
– center 
– covariance
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Learning conditional PDF’s

We can calculate P(R | skin) from a set of training images
But this isn’t quite what we want

• Why not?  How to determine if a pixel is skin?
• We want P(skin | R) not P(R | skin)
• How can we get it?
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Bayes rule

In terms of our problem:

what we measure
(likelihood)

domain knowledge
(prior)

what we want
(posterior)

normalization term

What can we use for the prior P(skin)?
• Domain knowledge:

– P(skin) may be larger if we know the image contains a person
– For a portrait, P(skin) may be higher for pixels in the center

• Learn the prior from the training set.  How?
– P(skin) is proportion of skin pixels in training set
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Bayesian estimation

Bayesian estimation
• Goal is to choose the label (skin or ~skin) that maximizes the 

posterior ↔ minimizes probability of misclassification
– this is called Maximum A Posteriori (MAP) estimation

likelihood posterior (unnormalized)
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Skin detection results
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This same procedure applies in more general 
circumstances
• More than two classes
• More than one dimension

General classification

Example:  face detection
• Here, X is an image region

– dimension = # pixels 
– each face can be thought of as a 

point in a high dimensional space

H. Schneiderman, T. Kanade. "A Statistical Method for 3D 
Object Detection Applied to Faces and Cars". CVPR 2000 
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Today’s lecture

Face recognition and detection
• color-based skin detection
• recognition: eigenfaces [Turk & Pentland]

and parts [Moghaddan & Pentland]
• detection: boosting [Viola & Jones]

Eigenfaces for recognition

Matthew Turk and Alex Pentland
J. Cognitive Neuroscience

1991
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Linear subspaces

Classification can be expensive:
• Big search prob (e.g., nearest neighbors) or store large PDF’s

Suppose the data points are arranged as above
• Idea—fit a line, classifier measures distance to line

convert x into v1, v2 coordinates

What does the v2 coordinate measure?

What does the v1 coordinate measure?

- distance to line
- use it for classification—near 0 for orange pts

- position along line
- use it to specify which orange point it is
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Dimensionality reduction

Dimensionality reduction
• We can represent the orange points with only their v1 coordinates 

(since v2 coordinates are all essentially 0)
• This makes it much cheaper to store and compare points
• A bigger deal for higher dimensional problems
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Linear subspaces
Consider the variation along direction v
among all of the orange points:

What unit vector v minimizes var?

What unit vector v maximizes var?

Solution: v1 is eigenvector of A with largest eigenvalue
v2 is eigenvector of A with smallest eigenvalue
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Principal component analysis
Suppose each data point is N-dimensional

• Same procedure applies:

• The eigenvectors of A define a new coordinate system
– eigenvector with largest eigenvalue captures the most variation 

among training vectors x
– eigenvector with smallest eigenvalue has least variation

• We can compress the data using the top few eigenvectors
– corresponds to choosing a “linear subspace”

» represent points on a line, plane, or “hyper-plane”
– these eigenvectors are known as the principal components
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The space of faces

An image is a point in a high dimensional space
• An N x M image is a point in RNM

• We can define vectors in this space as we did in the 2D case

+=
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Dimensionality reduction

The set of faces is a “subspace” of the set of images
• We can find the best subspace using PCA
• This is like fitting a “hyper-plane” to the set of faces

– spanned by vectors v1, v2, ..., vK
– any face 
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Eigenfaces

PCA extracts the eigenvectors of A
• Gives a set of vectors v1, v2, v3, ...
• Each vector is a direction in face space

– what do these look like?
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Projecting onto the eigenfaces
The eigenfaces v1, ..., vK span the space of faces

• A face is converted to eigenface coordinates by
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Recognition with eigenfaces
Algorithm

1. Process the image database (set of images with labels)
• Run PCA—compute eigenfaces
• Calculate the K coefficients for each image

2. Given a new image (to be recognized) x, calculate K 
coefficients

3. Detect if x is a face

4. If it is a face, who is it?
– Find closest labeled face in database

» nearest-neighbor in K-dimensional space
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Choosing the dimension K

K NMi = 

eigenvalues

How many eigenfaces to use?
Look at the decay of the eigenvalues

• the eigenvalue tells you the amount of variance “in the 
direction” of that eigenface

• ignore eigenfaces with low variance

View-Based and Modular 
Eigenspaces for Face Recognition

Alex Pentland, Baback Moghaddam and 
Thad Starner

CVPR’94
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Part-based eigenfeatures

Learn a separate
eigenspace for each
face feature

Boosts performance
of regular
eigenfaces



Bayesian Face Recognition

Baback Moghaddam, Tony Jebara
and Alex Pentland

Pattern Recognition
33(11), 1771-1782, November 2000

(slides from Bill Freeman, MIT 6.869, April 2005)
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Bayesian Face Recognition
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Bayesian Face Recognition
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Bayesian Face Recognition



Morphable Face Models

Rowland and Perrett ’95
Lanitis, Cootes, and Taylor ’95, ’97

Blanz and Vetter ’99
Matthews and Baker ’04, ‘07
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Morphable Face Model

Use subspace to model elastic 2D or 3D shape
variation (vertex positions), in addition to 
appearance variation

Shape S

Appearance T
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Morphable Face Model

3D models from Blanz and Vetter ‘99
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Face Recognition Resources
Face Recognition Home Page:
• http://www.cs.rug.nl/~peterkr/FACE/face.html

PAMI Special Issue on Face & Gesture (July ‘97)
FERET
• http://www.dodcounterdrug.com/facialrecognition/Feret/feret.htm

Face-Recognition Vendor Test (FRVT 2000)
• http://www.dodcounterdrug.com/facialrecognition/FRVT2000/frvt2000.htm

Biometrics Consortium
• http://www.biometrics.org
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Today’s lecture

Face recognition and detection
• color-based skin detection
• recognition: eigenfaces [Turk & Pentland]

and parts [Moghaddan & Pentland]
• detection: boosting [Viola & Jones]

Robust real-time face detection

Paul A. Viola and Michael J. Jones
Intl. J. Computer Vision
57(2), 137–154, 2004

(originally in CVPR’2001)
(slides adapted from Bill Freeman, MIT 6.869, April 2005)
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Scan classifier over locs. & scales
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“Learn” classifier from data

Training Data
• 5000 faces (frontal)
• 108 non faces
• Faces are normalized

• Scale, translation
Many variations
• Across individuals
• Illumination
• Pose (rotation both in plane and out)
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Characteristics of algorithm

• Feature set (…is huge about 16M features)
• Efficient feature selection using AdaBoost
• New image representation: Integral Image 
• Cascaded Classifier for rapid detection

Fastest known face detector for gray scale 
images
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Image features
• “Rectangle filters”

• Similar to Haar wavelets 

• Differences between 
sums of pixels in
adjacent rectangles
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Partial sum

Any rectangle is
D = 1+4-(2+3)

Also known as:
• summed area tables [Crow84]
• boxlets [Simard98]

Integral Image
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Huge library of filters
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Constructing the classifier

Perceptron yields a sufficiently powerful classifier

Use AdaBoost to efficiently choose best features
• add a new hi(x) at each round
• each hi(xk) is a “decision stump” b=Ew(y [x> q])

a=Ew(y [x< q])
x

hi(x)

θ
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Constructing the classifier

For each round of boosting:
• Evaluate each rectangle filter on each example
• Sort examples by filter values
• Select best threshold for each filter (min error)

• Use sorting to quickly scan for optimal threshold
• Select best filter/threshold combination
• Weight is a simple function of error rate
• Reweight examples

• (There are many tricks to make this more efficient.)
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Good reference on boosting

Friedman, J., Hastie, T. and Tibshirani, R. 
Additive Logistic Regression: a Statistical 
View of Boosting

http://www-stat.stanford.edu/~hastie/Papers/boost.ps

“We show that boosting fits an additive logistic 
regression model by stagewise optimization of a 
criterion very similar to the log-likelihood, and present 
likelihood based alternatives. We also propose a 
multi-logit boosting procedure which appears to have 
advantages over other methods proposed so far.”
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Trading speed for accuracy

Given a nested set of classifier hypothesis 
classes

Computational Risk Minimization 
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Speed of face detector (2001)

Speed is proportional to the average number of 
features computed per sub-window.

On the MIT+CMU test set, an average of 9 
features (/ 6061) are computed per sub-window.

On a 700 Mhz Pentium III, a 384x288 pixel image 
takes about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-
Kanade and 600 times faster than 
Schneiderman-Kanade.
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Sample results
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Summary (Viola-Jones)

• Fastest known face detector for gray images
• Three contributions with broad applicability:

Cascaded classifier yields rapid 
classification
AdaBoost as an extremely efficient feature 
selector
Rectangle Features + Integral Image can 
be used for rapid image analysis
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Face detector comparison

Informal study by Andrew Gallagher, CMU,
for CMU 16-721 Learning-Based Methods in 
Vision, Spring 2007 
• The Viola Jones algorithm OpenCV

implementation was used.  (<2 sec per image). 
• For Schneiderman and Kanade, Object Detection 

Using the Statistics of Parts [IJCV’04], the 
www.pittpatt.com demo was used. (~10-15 
seconds per image, including web transmission).  
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Schneiderman
KanadeViola

Jones
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Today’s lecture

Face recognition and detection
• color-based skin detection
• recognition: eigenfaces [Turk & Pentland]

and parts [Moghaddan & Pentland]
• detection: boosting [Viola & Jones]

Questions?


