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• Are you getting the whole picture?
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Recognising Panoramas

[ Brown and Lowe ICCV 2003, IJCV 2007 ]
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Invariant Features

• Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars
& Van Gool 2000, Mikolajczyk & Schmid 2001, Brown & Lowe 
2002, Matas et. al. 2002, Schaffalitzky & Zisserman 2002 



SIFT Features

• Invariant Features
– Establish invariant frame

• Maxima/minima of scale-space DOG ⇒ x, y, s
• Maximum of distribution of local gradients ⇒ θ

– Form descriptor vector
• Histogram of smoothed local gradients
• 128 dimensions

• SIFT features are…
– Geometrically invariant to similarity transforms,

• some robustness to affine change

– Photometrically invariant to affine changes in 
intensity
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Nearest Neighbour Matching

• Nearest neighbour matching

• Use k-d tree
– k-d tree recursively bi-partitions data at mean in the 

dimension of maximum variance
– Approximate nearest neighbours found in O(n log n)

• Find k-NN for each feature
– k ≈ number of overlapping images (we use k = 4)

[ Beis Lowe 1997, Nene Nayar 1997, Gray Moore 2000, Shakhnarovich 2003 ]
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2D Motion Models

• Linear (affine)

• Homography



Homography for Rotation

• Projection equation

• → pairwise homographies

set t = 0 for a pair

where
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RANSAC: 1D Line Fitting

least squares 
line
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RANSAC: 1D Line Fitting
RANSAC
line



Match Verification
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Motion Model Revisited

• Recall our image motion model

• Parameterise each camera by rotation and 
focal length



Bundle Adjustment

• Sum of squared projection errors

– n = #images
– I(i) = set of image matches to image i
– F(i, j) = set of feature matches between images i,j
– rij

k = residual of kth feature match between images i,j

• Huber (robust) error function



Bundle Adjustment

• Adjust rotation, focal length of each image to 
minimise error in matched features
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Automatic Straightening

• Heuristic: user does not twist camera relative to horizon

• Up-vector perpendicular to plane of camera x vectors



Automatic Straightening
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Gain Compensation

• Gain compensation

– Single gain parameter gi for each image

( Better solution = HDR [ Debevec 1997 ] )



Multi-band Blending

• No blending
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Multi-band Blending

• Multi-band blending

– Each pixel is a weighted sum (for each band)



Multi-band Blending
• Linear blending • Multi-band blending

[ Burt Adelson 1983 ]



2-band Blending



2-band Blending

Low frequency (λ > 2 pixels)

High frequency (λ < 2 pixels)



Seam Selection

• (simple) Choose image with max “weight”:

• (better) …also minimise error on seams

[ Agarwala et al SIGGRAPH 04 ]
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Demo



Evaluation

• 200+ test sequences…



Ground Truth

• Real: stitch “by hand”
• Synthetic: sample virtual camera views

Stitched panorama

Synthetic camera views



Error function

• Compare test stitch with ground truth
– Ground truth
– Test stitch

• Evaluation function
– sum of pairwise projection errors wrt ground truth



Results

• Testing performance 
(image scale)

• Tuning parameters 
(Huber sigma)



Conclusions

• Image Stitching using Local Features
– c.f. “direct methods”: fast, robust, 
– 2D stitching is a recognition problem 

• Multi-Image Matching Framework
– Local features, RANSAC, bundle adjustment, 

blending

• Future Work
– camera model += radial distortion, camera 

translation, scene motion, vignetting, HDR, flash … 
– Full 3D case 

• e.g. Photo Tourism [Snavely et al SIGGRAPH 2006]

http://research.microsoft.com/~brown
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