Video Google: Text Retrieval Approach to Object Matching in Videos

Authors: Josef Sivic and Andrew Zisserman University of Oxford ICCV 2003

Motivation

- Retrieve key frames and shots of video containing particular object with ease, speed and accuracy with which Google retrieves web pages containing particular words
- Investigate whether text retrieval approach is applicable to object recognition
- Visual analogy of word: vector quantizing descriptor vectors

Benefits

- Matches are pre-computed so at run time frames and shots containing particular object can be retrieved with no delay
- Any object (or conjunction of objects) occurring in a video can be retrieved even though there was no explicit interest in the object when the descriptors were built

Text Retrieval Approach

- Documents are parsed into words
- Words represented by stems
- Stop list to reject common words
- Remaining words assigned unique identifier
- Document represented by vector of weighted frequency of words
- Vectors organized in inverted files
- Retrieval returns documents with closest (angle) vector to query

Viewpoint invariant description

- Two types of viewpoint covariant regions computed for each frame
 - Shape Adapted (SA) Mikolajczyk & Schmid
 - Maximally Stable (MS) Matas et al.
- Detect different image areas
- Provide complimentary representations of frame
- Computed at twice originally detected region size to be more discriminating

Shape Adapted Regions: the Harris-Affine Operator

- Elliptical shape adaptation about interest point
- Iteratively determine ellipse center, scale and shape
- Scale determined by local extremum (across scale) of Laplacian
- Shape determined by maximizing intensity gradient isotropy over elliptical region
- Centered on corner-like features

Examples of Harris-Affine Operator

140 K. Mikolajczyk and C. Schmid

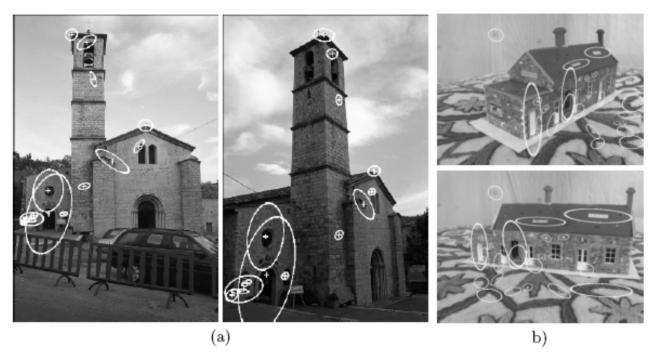


Fig. 6. (a) Example of a 3D scene observed from significantly different viewpoints. There are 14 inliers to a robustly estimated fundamental matrix, all of them correct. (b) An image pairs for which our method fails. There exist, however, corresponding points which we have selected manually.

Maximally Stable Regions

Use intensity watershed image segmentation

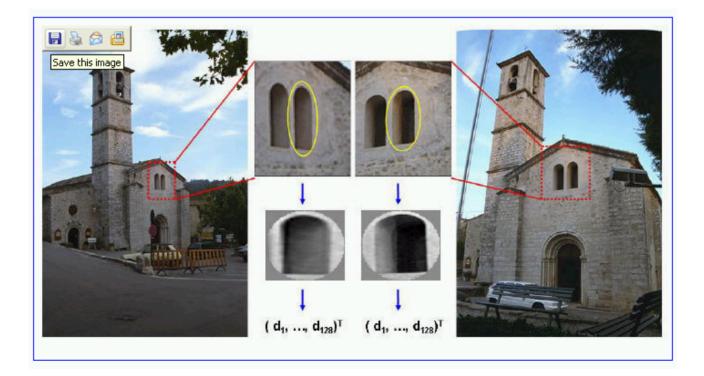
Select areas that are approximately stationary as intensity threshold is varied

Correspond to blobs of high contrast with respect to surroundings

Examples of Maximally Stable Regions

Feature Descriptor

Each elliptical affine invariant region represented by 128 dimensional vector using SIFT descriptor



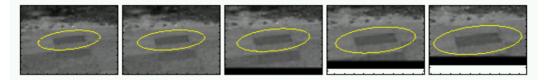
Noise Removal

- Information aggregated over sequence of frames
- Regions detected in each frame tracked using simple constant velocity dynamical model and correlation
- Region not surviving more than 3 frames are rejected
- Estimate descriptor for region computed by averaging descriptors throughout track

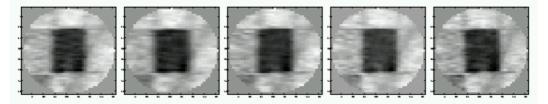
Noise Removal

Tracking region over 70 frames

First (left) and last (right) frame of the track.



Close-up of the 1st, 20th, 40th, 55th, 70th frame.



Visual Vocabulary

Goal: vector quantize descriptors into clusters (visual words)

When a new frame is observed, the descriptor of the new frame is assigned to the nearest cluster, generating matches for all frames

Visual Vocabulary

- Implementation: K-Means clustering
- Regions tracked through contiguous frames and average description computed
- 10% of tracks with highest variance eliminated, leaving about 1000 regions per frame
- Subset of 48 shots (~10%) selected for clustering
- Distance function: Mahalanobis
- 6000 SA clusters and 10000 MS clusters

Visual Vocabulary

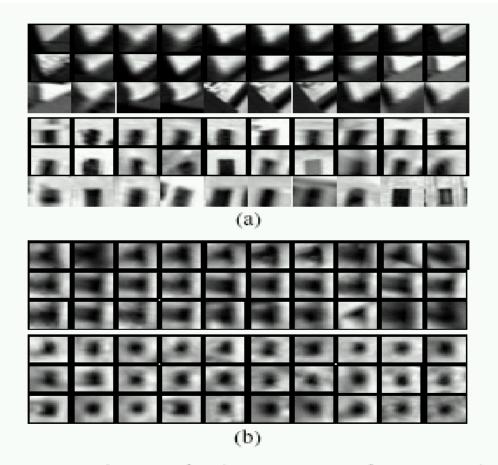


Figure 2: Samples from the clusters corresponding to a single visual word. (a) Two examples of clusters of Shape Adapted regions. (b) Two examples of clusters of Maximally Stable regions.

Experiments - Setup

- Goal: match scene locations within closed world of shots
- Data: 164 frames from 48 shots taken at 19 different 3D locations; 4-9 frames from each location

Experiments - Retrieval

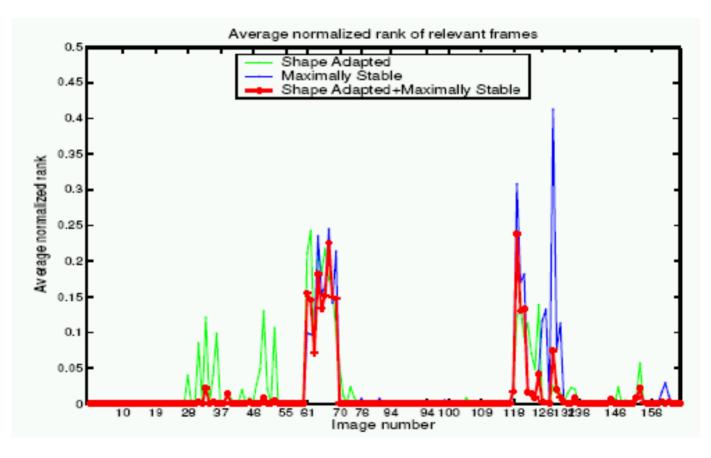
- Entire frame is query
- Each of 164 frames as query region in turn
- Correct retrieval: other frames which show same location
- Retrieval performance: average normalized rank of relevant images

$$\widetilde{Rank} = \frac{1}{NN_{rel}} \left(\sum_{i=1}^{N_{rel}} R_i - \frac{N_{rel}(N_{rel}+1)}{2} \right)$$

Rank lies between 0 and 1. Intuitively, it will be 0 if all relevant images are returned ahead of any others. It will be .5 for random retrievals. N_{rel} = # of relevant images for query image

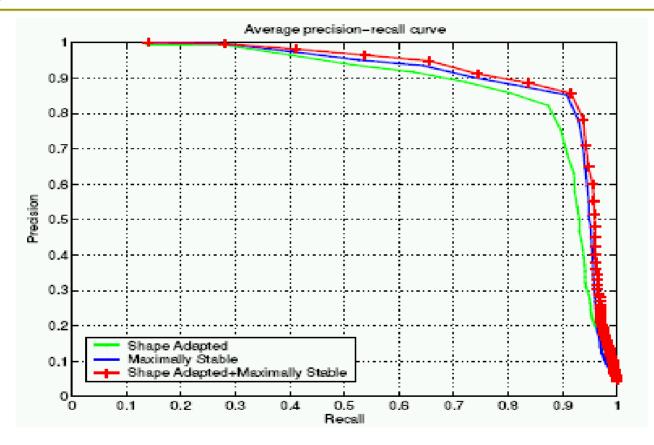
N = size of image set

Experiment - Results



Zero is good!

Experiments - Results



Precision = # relevant images/total # of frames retrieved Recall = # correctly retrieved frames/ # relevant frames

Stop List

Top 5% and bottom 10% of frequent words are stopped

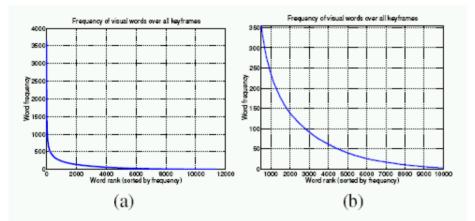


Figure 5: Frequency of MS visual words among all 3768 keyframes of Run Lola Run (a) before, and (b) after, application of a stoplist.

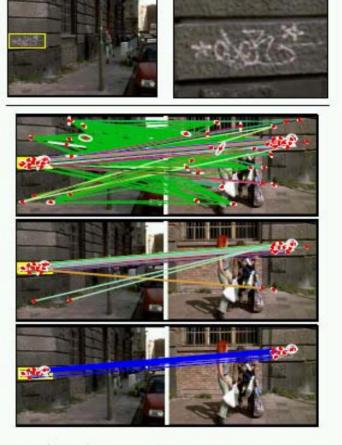


Figure 6: Matching stages. Top row: (left) Query region and (right) its close-up. Second row: Original word matches. Third row: matches after using stop-list, Last row: Final set of matches after filtering on spatial consistency.

Spatial Consistency

Matched region in retrieved frames have similar spatial arrangement to outlined region in query

Retrieve frames using weighted frequency vector and re-rank based on spatial consistency

More Results

Demo

- http://www.robots.ox.ac.uk/~vgg/researc h/vgoogle/how/method/method_a.html
- http://www.robots.ox.ac.uk/~vgg/researc h/vgoogle/index.html