Image Segmentation

Image segmentation is the operation of partitioning an image into a collection of connected sets of pixels.

- 1. into regions, which usually cover the image
- 2. into linear structures, such as
 - line segments
 - curve segments
- 3. into 2D shapes, such as
 - circles
 - ellipses
 - ribbons (long, symmetric regions)

Example 1: Regions

Example 2: Lines and Circular

Main Methods of Region Segmentation

- 1. Region Growing
- 2. Split and Merge
- 3. Clustering

Clustering

- There are K clusters $C_1, ..., C_K$ with means $m_1, ..., m_K$.
- The **least-squares error** is defined as

$$D = \sum_{k=1}^{K} \sum_{x_i \in C_k} ||x_i - m_k||^2.$$

• Out of all possible partitions into K clusters, choose the one that minimizes D.

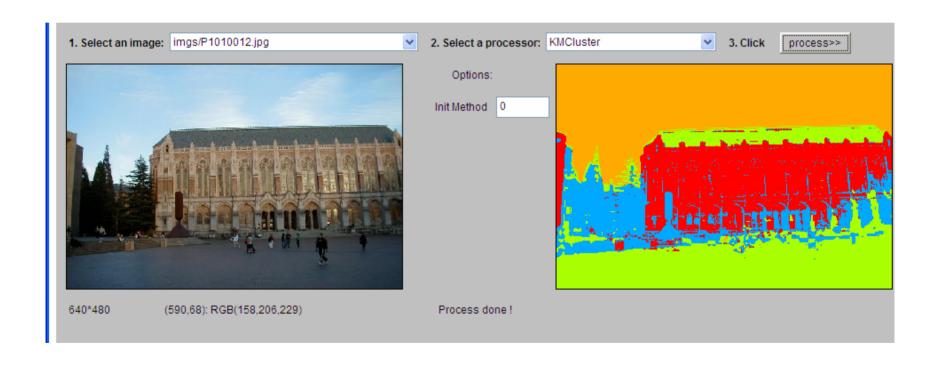
Why don't we just do this?

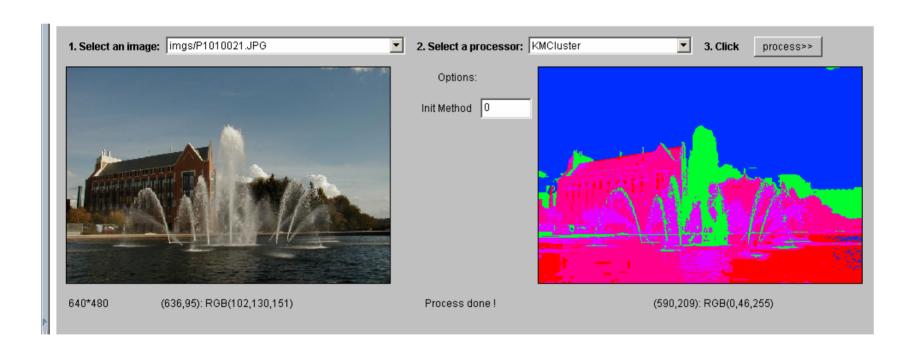
If we could, would we get meaningful objects?

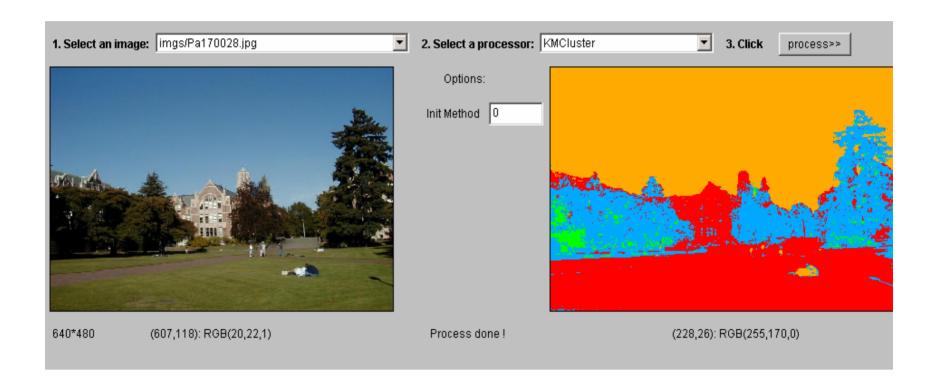
K-Means Clustering

Form K-means clusters from a set of n-dimensional vectors

- 1. Set ic (iteration count) to 1
- 2. Choose randomly a set of K means $m_1(1)$, ..., $m_K(1)$.
- 3. For each vector x_i compute $D(x_i, m_k(ic)), k=1,...K$ and assign x_i to the cluster C_i with nearest mean.
- 4. Increment ic by 1, update the means to get $m_1(ic),...,m_K(ic)$.
- 5. Repeat steps 3 and 4 until $C_k(ic) = C_k(ic+1)$ for all k.







K-means Variants

- Different ways to initialize the means
- Different stopping criteria
- Dynamic methods for determining the right number of clusters (K) for a given image

The EM Algorithm: a probabilistic formulation

K-Means

• Boot Step:

- Initialize K clusters: $C_1, ..., C_K$ Each cluster is represented by its mean m_i

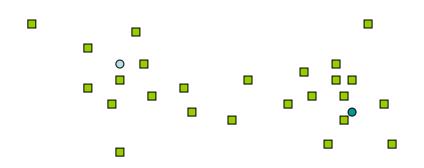
• Iteration Step:

Estimate the cluster for each data point

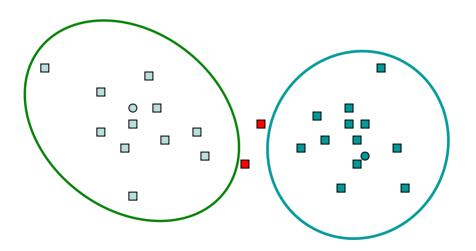
$$x_i \implies C(x_i)$$

Re-estimate the cluster parameters

$$m_j = mean\{x_i \mid x_i \in C_j\}$$



Where do the red points belong?



K-Means → EM

• Boot Step:

– Initialize K clusters: $C_1, ..., C_K$ (μ_i, Σ_i) and $P(C_i)$ for each cluster j.

• Iteration Step:

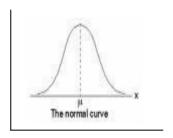
- Estimate the cluster of each data point $p(C_i | x_i)$

Re-estimate the cluster parameters

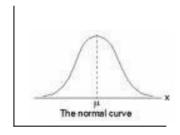
$$(\mu_j, \Sigma_j), p(C_j)$$
 For each cluster j

1-D EM with Gaussian Distributions

- Each cluster C_j is represented by a Gaussian distribution $N(\mu_i, \sigma_i)$.
- Initialization: For each cluster C_j initialize its mean μ_i , variance σ_i , and weight α_i .

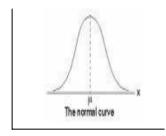


$$N(\mu_1 , \sigma_1) \\ \alpha_1 = P(C_1)$$



$$N(\mu_2, \sigma_2)$$

 $\alpha_2 = P(C_2)$



$$N(\mu_3, \sigma_3)$$

$$\alpha_3 = P(C_3)$$

Expectation

For each point x_i and each cluster C_j compute P(C_i | x_i).

•
$$P(C_j | x_i) = P(x_i | C_j) P(C_j) / P(x_i)$$

•
$$P(x_i) = \sum_{j} P(x_i | C_j) P(C_j)$$

Where do we get P(x_i | C_j) and P(C_j)?

1. Use the pdf for a normal distribution:

$$P(x_i \mid C_j) = \frac{1}{2\pi \sigma_j} e^{-\frac{(x_i - \mu_j)^2}{2\sigma_j^2}}$$

2. Use $\alpha_j = P(C_j)$ from the current parameters of cluster C_j .

Maximization

Having computed
 P(C_j | x_i) for each
 point x_i and each
 cluster C_j, use them
 to compute new
 mean, variance, and
 weight for each
 cluster.

$$\mu_j = \frac{\sum_{i} p(C_j \mid x_i) \cdot x_i}{\sum_{i} p(C_j \mid x_i)}$$

$$\sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})}$$

$$p(C_j) = \frac{\sum_{i} p(C_j \mid x_i)}{N}$$

Multi-Dimensional Expectation Step for Color Image Segmentation

Input (Known)

$$x_{1} = \{r_{1}, g_{1}, b_{1}\}\$$

$$x_{2} = \{r_{2}, g_{2}, b_{2}\}\$$
...
$$x_{i} = \{r_{i}, g_{i}, b_{i}\}\$$
...

Input (Estimation)

Cluster Parameters (μ_1, Σ_1) , $p(C_1)$ for C_1 (μ_2, Σ_2) , $p(C_2)$ for C_2

 (μ_k, Σ_k) , $p(C_k)$ for C_k

Output

Classification Results $p(C_{I}/x_{I})$ $p(C_{j}/x_{2})$... $p(C_{j}/x_{i})$...

$$p(C_j | x_i) = \frac{p(x_i | C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i | C_j) \cdot p(C_j)}{\sum_{j} p(x_i | C_j) \cdot p(C_j)}$$

Multi-dimensional Maximization Step for Color Image Segmentation

Input (Known)

$$x_{1} = \{r_{1}, g_{1}, b_{1}\}\$$
 $x_{2} = \{r_{2}, g_{2}, b_{2}\}\$
...
 $x_{i} = \{r_{i}, g_{i}, b_{i}\}\$
...

Input (Estimation)

Classification Results
$$p(C_1/x_1)$$

$$p(C_j/x_2)$$
...
$$p(C_j/x_i)$$
...

Output

Cluster Parameters
$$(\mu_{l}, \Sigma_{l}), p(C_{l})$$
 for C_{l} $(\mu_{2}, \Sigma_{2}), p(C_{2})$ for C_{2} ... $(\mu_{k}, \Sigma_{k}), p(C_{k})$ for C_{k}

$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \quad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \quad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

Full EM Algorithm Multi-Dimensional

Boot Step:

- Initialize K clusters: $C_1, ..., C_K$

 (μ_{j}, Σ_{j}) and $P(C_{j})$ for each cluster j.

Iteration Step:

Expectation Step

$$p(C_j \mid x_i) = \frac{p(x_i \mid C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i \mid C_j) \cdot p(C_j)}{\sum_{i} p(x_i \mid C_j) \cdot p(C_j)}$$
Maximization Stap

Maximization Step

$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

EM Demo

Demo

http://www.neurosci.aist.go.jp/~akaho/MixtureEM.html

Example

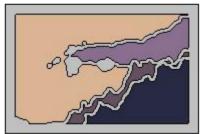
http://www-2.cs.cmu.edu/~awm/tutorials/gmm13.pdf

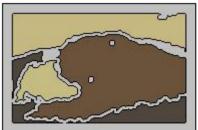
EM Applications

 Blobworld: Image segmentation using Expectation-Maximization and its application to image querying

• Yi's Generative/Discriminative Learning of object classes in color images

Blobworld: Sample Results





Jianbo Shi's Graph-Partitioning

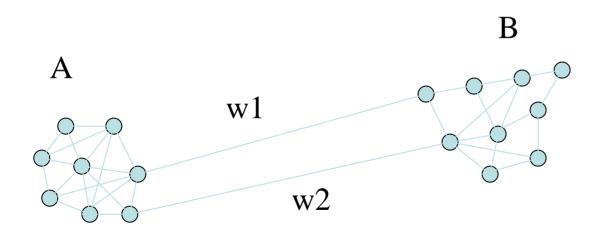
- An image is represented by a graph whose nodes are pixels or small groups of pixels.
- The goal is to partition the vertices into disjoint sets so that the similarity within each set is high and across different sets is low.

Minimal Cuts

- Let G = (V,E) be a graph. Each edge (u,v) has a weight w(u,v) that represents the similarity between u and v.
- Graph G can be broken into 2 disjoint graphs with node sets A and B by removing edges that connect these sets.
- Let $cut(A,B) = \sum_{u \in A, v \in B} w(u,v)$.
- One way to segment G is to find the minimal cut.

Cut(A,B)

$$cut(A,B) = \sum_{u \in A, \ v \in B} w(u,v).$$



Normalized Cut

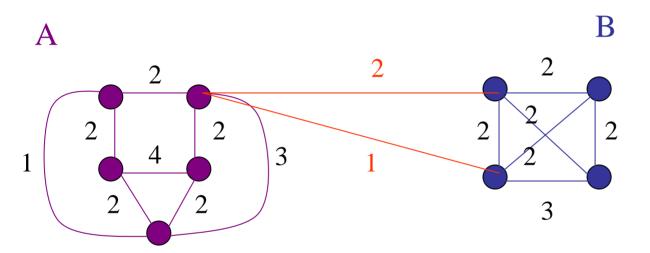
Minimal cut favors cutting off small node groups, so Shi proposed the **normalized cut.**

$$Ncut(A,B) = \begin{array}{c} cut(A,B) & cut(A,B) \\ Ncut(A,B) = ----- + ----- \\ asso(A,V) & asso(B,V) \end{array}$$

$$asso(A,V) = \sum_{u \in A, t \in V} w(u,t)$$

How much is A connected to the graph as a whole.

Example Normalized Cut



$$Ncut(A,B) = ---- + ----- 21 16$$

Shi turned graph cuts into an eigenvector/eigenvalue problem.

- Set up a weighted graph G=(V,E)
 - V is the set of (N) pixels
 - E is a set of weighted edges (weight w_{ij} gives the similarity between nodes i and j)
 - Length N vector d: d_i is the sum of the weights from node i to all other nodes
 - N x N matrix D: D is a diagonal matrix with d on its diagonal
 - $-N \times N$ symmetric matrix W: $W_{ij} = W_{ij}$

- Let x be a characteristic vector of a set A of nodes
 - $-x_i = 1$ if node i is in a set A
 - $-x_i = -1$ otherwise
- Let y be a continuous approximation to x

$$y = (1+x) - \frac{\sum_{x_i > 0} d_i}{\sum_{x_i < 0} d_i} (1-x).$$

Solve the system of equations

$$(D - W) y = \lambda D y$$

for the eigenvectors y and eigenvalues λ

- Use the eigenvector y with second smallest eigenvalue to bipartition the graph (y => x => A)
- If further subdivision is merited, repeat recursively

How Shi used the procedure

Shi defined the edge weights w(i,j) by

$$w(i,j) = e^{||F(i)-F(j)||_2 \, / \, \sigma I} \, * \, \left\{ \begin{array}{ll} e^{||X(i)-X(j)||_2 \, / \, \sigma X} & \text{if } ||X(i)-X(j)||_2 \, < r \\ 0 & \text{otherwise} \end{array} \right.$$

where X(i) is the spatial location of node i
F(i) is the feature vector for node I
which can be intensity, color, texture, motion...

The formula is set up so that w(i,j) is 0 for nodes that are too far apart.

Examples of Shi Clustering http://www.cis.upenn.edu/~jshi/

See Shi's Web Page

Problems with Graph Cuts

- Need to know when to stop
- Very Slooooow

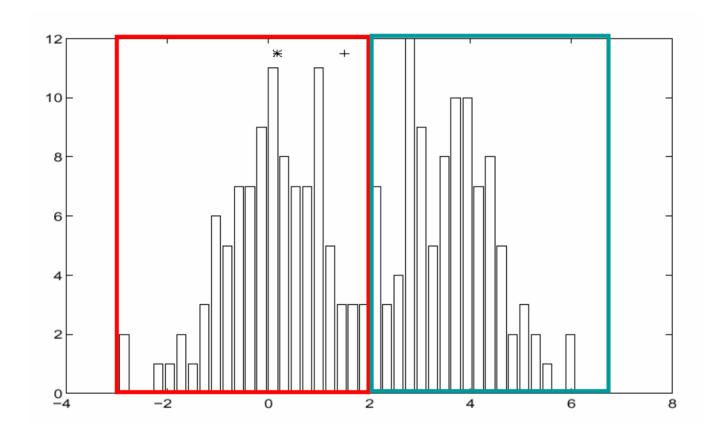
Problems with EM

- Local minima
- Need to know number of segments
- Need to choose generative model

Mean-Shift Clustering

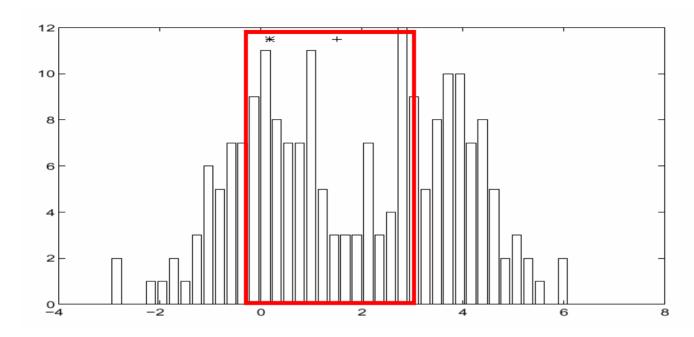
- Simple, like K-means
- But you don't have to select K
- Statistical method
- Guaranteed to converge to a fixed number of clusters.

Finding Modes in a Histogram



- How Many Modes Are There?
 - Easy to see, hard to compute

Mean Shift [Comaniciu & Meer]

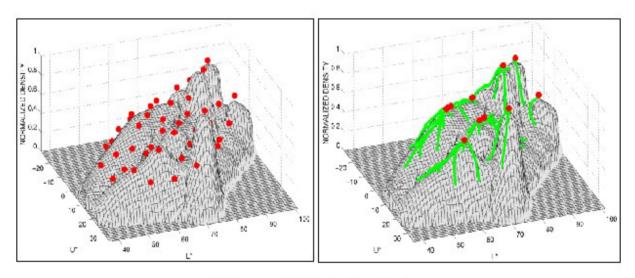


Iterative Mode Search

- 1. Initialize random seed, and window W
- 2. Calculate center of gravity (the "mean") of W: $\sum_{x \in W} xH(x)$
- 3. Translate the search window to the mean
- 4. Repeat Step 2 until convergence

Mean Shift Approach

- Initialize a window around each point
- See where it shifts—this determines which segment it's in
- Multiple points will shift to the same segment



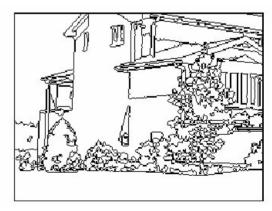
Mean shift trajectories

Segmentation Algorithm

- First run the mean shift procedure for each data point x and store its convergence point z.
- Link together all the z's that are closer than .5 from each other to form clusters
- Assign each point to its cluster
- Eliminate small regions

Mean-shift for image segmentation

- Useful to take into account spatial information
 - instead of (R, G, B), run in (R, G, B, x, y) space
 - D. Comaniciu, P. Meer, Mean shift analysis and applications,
 7th International Conference on Computer Vision, Kerkyra,
 Greece, September 1999, 1197-1203.
 - http://www.caip.rutgers.edu/riul/research/papers/pdf/spatmsft
 .pdf



More Examples: http://www.caip.rutgers.edu/~comanici/segm_images.html

References

- Shi and Malik, "<u>Normalized Cuts and Image</u>
 <u>Segmentation</u>," Proc. CVPR 1997.
- Carson, Belongie, Greenspan and Malik, "<u>Blobworld:</u> <u>Image Segmentation Using Expectation-Maximization</u> <u>and its Application to Image Querying</u>," IEEE PAMI, Vol 24, No. 8, Aug. 2002.
- Comaniciu and Meer, "<u>Mean shift analysis and applications</u>," Proc. *ICCV* 1999.