#### **Motion Estimation**

Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

## Why estimate motion?

We live in a 4-D world

Wide applications

- Object Tracking
- Camera Stabilization
- Image Mosaics
- 3D Shape Reconstruction (SFM)
- Special Effects (Match Move)



#### Frame from an ARDA Sample Video



## Change detection for surveillance

- Video frames: F1, F2, F3, ...
- Objects appear, move, disappear
- Background pixels remain the same (simple case)



- How do you detect the moving objects?
- Simple answer: pixelwise subtraction

#### Example: Person detected entering room



- Pixel changes detected as difference components
- Regions are (1) person, (2) opened door, and (3) computer monitor.
- System can know about the door and monitor. Only the person region is "unexpected".

#### Change Detection via Image Subtraction

for each pixel [r,c] if (|I1[r,c] - I2[r,c]| > threshold) then Iout[r,c] = 1 else Iout[r,c] = 0

Perform connected components on Iout.

Remove small regions.

Perform a closing with a small disk for merging close neighbors.

Compute and return the bounding boxes B of each remaining region.

What assumption does this make about the changes?

#### Change analysis



Known regions are ignored and system attends to the unexpected region of change. Region has bounding box similar to that of a person. System might then zoom in on "head" area and attempt face recognition.

## **Optical flow**



## Problem definition: optical flow



How to estimate pixel motion from image H to image I?

- Solve pixel correspondence problem
  - given a pixel in H, look for nearby pixels of the same color in I

#### Key assumptions

- color constancy: a point in H looks the same in I
  - For grayscale images, this is **brightness constancy**
- **small motion**: points do not move very far

This is called the **optical flow** problem

## Optical flow constraints (grayscale images)



Let's look at these constraints more closely

• brightness constancy: Q: what's the equation?

$$H(x, y) = I(x+u, y+v)$$

• small motion: (u and v are less than 1 pixel)

- suppose we take the Taylor series expansion of I:

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$
$$\approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v \qquad 10$$

## **Optical flow equation**

Combining these two equations  

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$
shorthand:  $I_x = \frac{\partial I}{\partial x}$ 
The x-component of the gradient vector.

What is  $I_t$ ? The time derivative of the image at (x,y)

How do we calculate it?

 $0 = I_t + \nabla I \cdot [u \ v]$ 

Q: how many unknowns and equations per pixel? 1 equation, but 2 unknowns (u and v)

Intuitively, what does this constraint mean?

- The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown

#### Aperture problem



#### Aperture problem



## Solving the aperture problem

Basic idea: assume motion field is smooth

Lukas & Kanade: assume locally constant motion

- pretend the pixel's neighbors have the same (u,v)
  - If we use a 5x5 window, that gives us 25 equations per pixel!

 $0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$ 

#### Many other methods exist. Here's an overview:

• Barron, J.L., Fleet, D.J., and Beauchemin, S, Performance of optical flow techniques, *International Journal of Computer Vision*, 12(1):43-77, 1994.

#### Lukas-Kanade flow

How to get more equations for a pixel?

- Basic idea: impose additional constraints
  - most common is to assume that the flow field is smooth locally
  - one method: pretend the pixel's neighbors have the same (u,v)
    - » If we use a 5x5 window, that gives us 25 equations per pixel!

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix}$$

## **RGB** version

How to get more equations for a pixel?

- Basic idea: impose additional constraints
  - most common is to assume that the flow field is smooth locally
  - one method: pretend the pixel's neighbors have the same (u,v)
    - » If we use a 5x5 window, that gives us 25\*3 equations per pixel!

 $0 = I_t(\mathbf{p_i})[0, 1, 2] + \nabla I(\mathbf{p_i})[0, 1, 2] \cdot [u \ v]$ 

$$\begin{bmatrix} I_x(\mathbf{p}_1)[0] & I_y(\mathbf{p}_1)[0] \\ I_x(\mathbf{p}_1)[1] & I_y(\mathbf{p}_1)[1] \\ I_x(\mathbf{p}_1)[2] & I_y(\mathbf{p}_1)[2] \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25})[0] & I_y(\mathbf{p}_{25})[0] \\ I_x(\mathbf{p}_{25})[1] & I_y(\mathbf{p}_{25})[1] \\ I_x(\mathbf{p}_{25})[2] & I_y(\mathbf{p}_{25})[2] \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1)[0] \\ I_t(\mathbf{p}_1)[2] \\ \vdots \\ I_t(\mathbf{p}_{1})[2] \\ \vdots \\ I_t(\mathbf{p}_{25})[0] \\ I_t(\mathbf{p}_{25})[1] \\ I_t(\mathbf{p}_{25})[2] \end{bmatrix} \\ \frac{A}{75 \times 2} \qquad \frac{d}{2 \times 1} \qquad \frac{b}{75 \times 1}$$

#### Lukas-Kanade flow

Prob: we have more equations than unknowns

$$\begin{array}{ccc} A & d = b \\ _{25\times2} & _{2\times1} & _{25\times1} \end{array} \longrightarrow \text{minimize } \|Ad - b\|^2$$

Solution: solve least squares problem

• minimum least squares solution given by solution (in d) of:

$$(A^T A)_{2\times 2} d = A^T b_{2\times 1} d = A^T b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lukas & Kanade for stereo matching (1981)

## Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

#### When is This Solvable?

- **A<sup>T</sup>A** should be invertible
- **A<sup>T</sup>A** should not be too small due to noise
  - eigenvalues  $\lambda_1$  and  $\lambda_2$  of **A<sup>T</sup>A** should not be too small
- A<sup>T</sup>A should be well-conditioned
  - $-\lambda_1/\lambda_2$  should not be too large ( $\lambda_1$  = larger eigenvalue)

#### Edges cause problems







- large gradients, all the same
- large  $\lambda_1$ , small  $\lambda_2$

#### Low texture regions don't work





 $\sum \nabla I (\nabla I)^T$ 

- gradients have small magnitude
- small  $\lambda_1,$  small  $\lambda_2$

### High textured region work best



#### Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose A<sup>T</sup>A is easily invertible
- Suppose there is not much noise in the image

When our assumptions are violated

- Brightness constancy is **not** satisfied
- The motion is **not** small
- A point does **not** move like its neighbors
  - window size is too large
  - what is the ideal window size?

## Revisiting the small motion assumption



Is this motion small enough?

- Probably not—it's much larger than one pixel (2<sup>nd</sup> order terms dominate)
- How might we solve this problem?

#### Reduce the resolution!





#### Coarse-to-fine optical flow estimation



#### Coarse-to-fine optical flow estimation



## A Few Details

#### • Top Level

- Apply L-K to get a flow field representing the flow from the first frame to the second frame.
- Apply this flow field to warp the first frame toward the second frame.
- Rerun L-K on the new warped image to get a flow field from it to the second frame.
- Repeat till convergence.
- Next Level
  - Upsample the flow field to the next level as the first guess of the flow at that level.
  - Apply this flow field to warp the first frame toward the second frame.
  - Rerun L-K and warping till convergence as above.
- Etc.

#### The Flower Garden Video

## What should the optical flow be?



| ** | ** | ** | ••• | ** | ** | -  | ** | ** | -  | -  | -  | +  | -  | +- | - | <b>.</b> | -  |   | ••• | - |   |   |   | -4 |   |   |     | • | • |   | - | -  |    |   |   |
|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|---|----------|----|---|-----|---|---|---|---|----|---|---|-----|---|---|---|---|----|----|---|---|
|    | -  | -  |     |    | ** | ** | ** | +* | -  | -  | ** | -  | +- | -  | - | -        | -  | - | -   | - | - | - |   |    |   | - | •   | • | • | • | - | ** | ** |   |   |
| 1  | -  |    |     |    | +* | +* | -  | ** | +- |    | -  | ** | ** | ** | - | **       | -  | - | -   | - | - | - |   |    | - | - | -   |   | • | • | - | -  |    |   |   |
| •  | +  | +- | +   | +- | +  | +- | -  | +- | -  | •  | •  | +  | -  | -  | - | -        | +- | - | -   | - | - | - |   |    | - |   |     |   | • | • |   |    |    |   |   |
| *- | +  | +  | +   | +  | +- | -  | -  | +- | •  | -  | •  | -  | •  | •  | • | **       | +  | - |     | - | - | - | - |    | - | + | •   | ٠ | - | - | - |    | •  | • |   |
| +- | •  | +  | +   | -  | +- | -  | -  | -  | +  | •- | •  | -  | -  |    | - |          | -  | - |     | - | - | - | - |    | - | - | -   | - | - | - | - | -  | -  | - | • |
| ~  | ~  | -  | ~   | -  | -  | +- | -  | ~  | ~  | +  | -  | ~  | -  | -  | - | -        | -  | - | -   | - | - | - |   | ~  | - | - | -   | - | - | - | - | -  | -  | - | - |
| ~  | ~  | -  | -   | -  | -  | -  | •  | ~  | ~  | -  | -  | -  | -  | -  | - | -        | -  | - | -   | - | - | - |   | ~  | - | - | -   | - | - | - | - | -  | -  | - | - |
|    |    | ~  | •   | •  | •  | •  | •  | ~  | ~  | -  | -  | -  | -  | -  | - | -        | -  | - | -   | - | - | - | - | ~  | - | - | -   | - | - | - | - | -  | -  | - | - |
|    |    | -  |     | -  | •  | -  | -  | -  | -  | -  | -  | -  |    | -  | - | -        | -  | - | -   | ~ | - | - | - | ~  | - | - | -   | - | - | - | - | -  | -  | - | - |
|    |    | -  | -   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -        | -  | - | -   | ~ | - | - | - | -  | - | - | -   | • | • | • | - | -  | -  | - | - |
| -  | -  | -  | -   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -        | -  | - | -   | ~ | - | - |   | -  | • | • | •   | • | - | - | - | -  | -  | - | - |
| -  | ~  | ~  | -   | -  | -  | -  | -  | -  | ~  | ~  | -  | -  | -  | -  | - | -        | -  | - | -   | ~ |   | - |   | -  | - | - | -   | - | ÷ | ÷ | - | -  | -  | - | - |
| ~  | -  | ~  | •   | •  | •  | •  |    | -  | -  | -  | -  | -  | 1  | -  | ÷ | -        | -  | - | -   | ~ |   |   |   | -  | - | - | -   | - | - | ÷ | - | -  | ÷  | - | - |
| •  | -  | -  | -   | -  | -  | -  | -  | -  | ~  | -  | -  | -  | -  | -  | - | -        | -  | - | -   | - |   | - | - | -  | - | - | -   | - | - | ÷ | - | -  | -  | - | - |
| -  | ~  | -  | -   | -  | -  | -  | -  | -  | ~  | -  | -  | -  | -  | -  | - | -        | -  | - | -   | - | - | - | - |    | - | - | -   | - | - | - | - | -  | -  | - | - |
| -  | -  | -  | -   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -        | -  | - | ~   | - | - | - | - | -  | - | - | -   | - | - | - | - | -  | -  | ÷ | - |
| -  | -  | -  | -   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | •        | •  | - | -   | - | - | - | - | -  | - | - | -   | - | - | - | - | -  | -  | - | - |
| -  | -  | ~  | ~   | -  | ~  | -  | 2  | -  | ~  | ~  | -  | -  | -  | -  | - | -        | -  | ~ | -   | - | - | - | - | -  | - | - | -   | - | - | - | - | -  | -  | - | - |
| ~  | -  | -  | -   | -  | -  | -  | -  | ~  | -  | -  | -  | -  | -  | -  | - | -        | -  | - | -   | - | - | - | - | -  | - |   | -   | - | - | - | - | -  | -  | - | - |
| ~  | -  | -  | -   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -        | -  | - | -   | - | - | - | - | -  | - |   | -   | - | - | - | - | -  | -  | - | - |
| ~  | 2  | -  | -   | 2  | 2  | 2  | 2  | 2  | ~  | -  | -  | 2  | -  | -  | • | •        | -  | - | -   | - | - | - | - |    | - |   | - 1 | - | • | - | - | -  | •  | • | - |
| -  | -  | *  | -   | ÷  | ÷  | ÷  | ÷  | +  | -  | +  | +  | +  | +  | ÷  | * | +        | +  | - | -   | - | - | - | - |    |   |   |     | - | + | + | + | +  | +  | + | + |
| -  | +  | +  | +   | +  | -  | -  | *  | *  | *  | +  | +  | ÷  | +  | ÷  | + | +        | •  | • | -   | - | - | - | - |    |   |   |     | - | - | - |   | -  | -  | - | - |

Robust Visual Motion Analysis: Piecewise-Smooth Optical Flow

> Ming Ye Electrical Engineering University of Washington

#### **Structure From Motion**



**Rigid scene + camera translation** 



#### **Estimated horizontal motion**



## Scene Dynamics Understanding





Brighter pixels => larger speeds.

- Surveillance
- Event analysis
- Video compression

#### **Estimated horizontal motion**



Motion boundaries are smooth.

#### **Motion smoothness**

## **Target Detection and Tracking**





#### A tiny airplane --- only observable by its distinct motion

#### **Tracking results**

Estimating Piecewise-Smooth Optical Flow with Global Matching and Graduated Optimization

**Problem Statement:** 

Assuming only brightness conservation and piecewise-smooth motion, find the optical flow to best describe the intensity change in three frames.

# Approach: Matching-Based Global Optimization

- Step 1. Robust local gradient-based method for high-quality initial flow estimate.
- Step 2. Global gradient-based method to improve the flow-field coherence.
- Step 3. Global matching that minimizes energy by a greedy approach.

## **Global Energy Design**

Global energy

$$E = \sum_{\text{all sites s}} E_B(V_s) + E_S(V_s)$$

- V is the optical flow field.
- $V_s$  is the optical flow at pixel (site) s.
- $E_B$  is the brightness conservation error.
- $E_s$  is the flow smoothness error in a neighborhood about pixel s.

## **Global Energy Design**

Brightness error

$$E_B(V_s) = \rho(e_W(V_s), \sigma_{B_s})$$

warping error

$$e_W(V_s) = \min(|I^-(V_s) - I_s|, |I^+(V_s) - I_s|)$$

 $I^{-}(V_{s})$  is the warped intensity in the previous frame.  $I^{+}(V_{s})$  is the warped intensity in the next frame.



**Error function:** 

$$\rho(x,\sigma) = \frac{x^2}{\sigma^2 + x^2}$$
 where  $\sigma$  is a scale parameter. <sub>37</sub>

## **Global Energy Design**

Smoothness error

$$E_{S}(V_{i}) = \frac{1}{8} \sum_{n \in N_{s}^{8}} \rho(|V_{s} - V_{n}|, \sigma_{S_{s}})$$

#### Smoothness error is computed in a neighborhood around pixel s.

$$\begin{bmatrix} V_{nw} & V_n & V_{ne} \\ V_w & V_s & V_e \\ V_{sw} & V_s & V_{se} \end{bmatrix}$$

**Error function:** 

$$\rho(x,\sigma) = \frac{x^2}{\sigma^2 + x^2}$$

38

#### **Overall Algorithm**



## Advantages

#### Best of Everything

- Local OFC
  - High-quality initial flow estimates
  - Robust local scale estimates
- Global OFC
  - Improve flow smoothness
- Global Matching
  - The optimal formulation
  - Correct errors caused by poor gradient quality and hierarchical process

Results: fast convergence, high accuracy, simultaneous motion boundary detection

- Experiments were run on several standard test videos.
- Estimates of optical flow were made for the middle frame of every three.
- The results were compared with the Black and Anandan algorithm.

## **TS: Translating Squares**

Homebrew, ideal setting, test performance upper bound



64x64, 1pixel/frame



#### Groundtruth (cropped), Our estimate looks the same

#### **TS:** Flow Estimate Plots



#### S3 looks the same as the groundtruth.

S1, S2, S3: results from our Step I, II, III (final)

## TT: Translating Tree



e: error in pixels, cdf: culmulative distribution function for all pixels

## **DT: Diverging Tree**



#### YOS: Yosemite Fly-Through



#### TAXI: Hamburg Taxi



256x190, (Barron 94) max speed 3.0 pix/frame LMS

BA







**Ours** 

**Error** map

Smoothness error 47

#### Traffic



512x512 (Nagel) max speed: 6.0 pix/frame











#### **Ours**

**Error** map

Smoothness error

#### Pepsi Can



201x201 (Black) Max speed: 2pix/frame



Ours



BA



Smoothness error

#### FG: Flower Garden



360x240 (Black) Max speed: 7pix/frame BA

LMS





**Error** map

Smoothness error 50