Date released: Wednesday, April 18 2007
Date due: Friday, May 4 2007 11:59pm
Late
policy: 5% off per day late till Sunday 05/06/2007
Download
Indri's slides (results from her project)
In this project, you will write code to detect discriminating features in an image and find the best matching features in other images. Your features should be reasonably invariant to translation, rotation, and illumination, and (to a lesser degree) scale, and you'll evaluate their performance on a suite of benchmark images. Scale is less important because it's a lot harder - however, any descriptor that is invariant to the other factors will be slightly scale invariant as well. You're not expected to implement SIFT!
To help you visualize the results and debug your program, we provide a working user interface that displays detected features and best matches in other images. We also provide sample feature files that were generated using SIFT, the current best of breed technique in the vision community, for comparison.
The project has three parts: feature detection, description, and matching.
In this step, you will identify points of interest in the image using the Harris corner detection method.
For each point in the image, consider a window of pixels around that point. Compute the Harris matrix M for that point, defined as
To find interest points, first compute the corner response R
(Try k = 0.05)
Once you've computed R for every point in the image, choose points where R is above a threshold. You also want it to be a local maximum in at least a 3x3 neighborhood.
Feel free to implement other features as well if you want.
Now that you've identified points of interest, the next step is to come up with a descriptor for the feature centered at each interest point. This descriptor will be the representation you'll use to compare features in different images to see if they match.
For starters, try using a small square window (say 5x5) as the feature descriptor. This should be very easy to implement and should work well when the images you're comparing are related by a translation.
Next, try implementing a better feature descriptor. You can
define it however you want, but you should design it to be robust to
changes in position, orientation (i.e., rotation), and
illumination. You are welcome to use techniques described in
lecture (e.g., detecting dominant orientations, using image pyramids,
using a disc instead of a square window), or come up with your own
ideas. This is the main challenge of the assignment.
Now that you've detected and described your features, the next step
is to write code to match them, i.e., given a feature in one image,
find the best matching feature in one or more other images.
The skeleton code provided finds the SSD between all feature
descriptors in a pair of images. The code declares a match between each
feature and it's best match (nearest neighbor) in the second image.
For each feature in the first image, use SSD to find the best match (or no match) in the second image. The idea here is to find a good threshold for deciding if a match exists. There are two methods you might use to solve this problem:
1. use a threshold on the match score
2. compute (score of the best feature match)/(score of the second
best feature match), and threshold on that
Now you're ready to go! Using the UI and skeleton code that we provide, or your own matlab code, you can load in a set of images, view the detected features, and visualize the feature matches that your algorithm computes. Matlab users may want to scope out the C++ code for tips on comparing the features.
We are providing a set of benchmark images to be used to test the performance of your algorithm as a function of different types of controlled variation (i.e., rotation, scale, illumination, perspective, blurring). For each of these images, we know the correct transformation and can therefore measure the accuracy of each of your feature matches. This is done using a routine that we supply in the skeleton code.
Download some image sets: leuven, bikes, graf, wall
Included with these images are
http://cat.middlebury.edu/stereo/data.html
Get access to FLTK.
(Here are local copies for windows
and linux, but see below about
using it on linux.) **disclaimer** the skeleton
code was designed to be used with FLTK-1. It has not been tested with
FLTK-2.
On Windows you'll need to install it yourself. (If you unzip FLTK to
somewhere other than the directory above the project, you'll have
to change the project settings
to look for the include and library files in the correct location.)
If you're using Linux on one of the CSE department machines, you don't
need to download FLTK, since you can just use the libraries in
/uns/lib/. The Makefile included in the zip expects to find fltk in
/uns. If you already have it or are installing it in /usr/local, here
are fltk
installation instructions and an alternate
Makefile for the skeleton code.
Download the C++ skeleton code:
The skeleton classes that need to be edited are in file features.cpp.
The starting points for editing the classes are in functions: computeFeatures and matchFeatures. computeFeatures is the function
that performs feature detection and feature description. matchFeatures is the function that
performs the feature matching. Currently computeFeatures is calling a dummy
function called dummyComputeFeatures,
and matchFeatures is calling
a dummy function called dummyMatchFeatures.
For feature detection, you will need to modify the computeHarris method.
For feature description, you will need to write two different extractDescriptor methods that
implement the two different ways of representing your features, and
modify computeFeatures to
call the two different extractDescriptor
methods.
For feature matching, you will need to write at least two
different MatchingFeatures function
that implement the different ways you select
the matching threshold when using SSD. You will also need to modify matchFeatures to call the two
different matching functions you wrote.
After compiling and linking the skeleton code, you will have an
executable cse576. This can be run in several ways:
cse576
with no command line options starts the GUI. Inside the GUI, you can load a query image and its corresponding feature file, as well as an image database file, and search the database for the image which best matches the query features. You can use the mouse buttons to select a subset of the features to use in the query.
Until you write your feature matching routine, the features are matched by minimizing the Euclidean distance between feature vectors.
cse576 computeFeatures imagefile featurefile [featuretype]
uses your feature detection routine to compute the features for imagefile,
and writes them to featurefile. featuretype specifies
which of your (at least two) types of features to compute.
cse576 testMatch featurefile1 featurefile2 homographyfile
[matchtype]
uses your feature matching routine to match the features in featurefile1
with the features in featurefile2. homographyfile
contains the correct transformation between the points in the two
images, specified by a 3-by-3 matrix. matchtype
specifies which of your (at least two) types of matching algorithms to
use. Returns the average pixel error between the matched feature and
the real transformed point.
cse576 testSIFTMatch featurefile1 featurefile2 homographyfile
[matchtype]
is the same as above, but uses the SIFT file format.
cse576
benchmark imagedir [featuretype matchtype]
tests your feature finding and matching for all of the images in one of
the four above sets. imagedir is the directory containing the
image (and homography) files. This command will return the average
pixel error when matching the first image in the set with each of the
other five images.
In addition to your source code and executable, turn in a report describing your approach and results. In particular:
This report can be a Word document, or pdf document.
Email Indri writeup and your source code by Friday, May 4 2007
11:59pm.. Zip up your report, source code and images into a file with
your name as the name of the file , eg. JohnDoe.zip.
For those who would like to challenge themselves, here is a list of suggestions for extending the program for a small amount of extra credit. You are encouraged to come up with your own extensions as well!