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ABSTRACT

This paper presents an overview of the Scale Saliency
algorithm recently introduced in (10). Scale Saliency
is a novel method for measuring the saliency of image
regions and selecting optimal scales for their analysis.
The model underlying the algorithm deems image re-
gions salient if they are simultaneously unpredictable in
some feature-space and over scale. The algorithm pos-
sesses a number of attractive properties: invariance to
planar rotation, scaling, intensity shifts and translation;
robustness to noise, changes in viewpoint, and intensity
scalings. Moreover, the approach offers a more gen-
eral model of feature saliency compared with conven-
tional ones, such as those based on kernel convolution,
for example wavelet analysis, since such techniques de-
fine saliency and scale only with respect to a particular
set of basis morphologies. Finally, we present a gener-
alised version of the original algorithm which is invariant
to Affine transformations.

INTRODUCTION

Computer vision algorithms are, in general, information
reduction processes. Brute-force approaches to image
or image sequence analysis can quickly overwhelm most
computing resources at our disposal. Fortunately, images
are a redundant data source. The same set of inferences
may be drawn from a variety of image characteristics.
This becomes self-evident considering the array of dif-
ferent methodologies available for solving any particular
vision task. Hence, the selection of a sufficient set of im-
age regions and properties, or salient features, forms the
first step in many computer vision algorithms.

Two key issues face the vision algorithm designer: the
subset of image properties selected for subsequent analy-
sis and the model used to represent those properties. For
example, many image matching algorithms begin with a
set of ‘landmark’ points which serve as a basis for esti-
mating the image transformation that defines the match.
In this case, well-localised and unique image regions are
desirable to minimise the likelihood of false matches. For
many tasks, geometric and photometric invariance prop-
erties are also beneficial. Finally, there is often an im-
plicit, but difficult to quantify, requirement that the salient
regions be relevant to the task of interest — in other
words, the regions or descriptions subsequently extracted
from them are somehow characteristic of the scene con-
tents they are intended to signify.
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Many definitions for saliency have been proposed.
Perhaps the most popular have arisen out of the appli-
cation of local surface differential geometry techniques
to imaging. Such methods consider the image to be a
discrete approximation to a surface and categorize it by
application of differential operators. Closely related to
these are basis projection and filtering methods. Com-
mon to both is the development of one or two dimen-
sional features; one dimensional features include edges,
lines, ridges (2, 3); two dimensional features are often
referred to as Interest points or ‘Corners’ (4, 7). More
recently, inspired by the pioneering of Lindeberg work
(11), scale and affine adapted versions of Interest point
detectors have been developed, based on Corner (12) and
blob detectors (1).

In general, these methods share one assumption: that
saliency can be defined directly with respect to some par-
ticular property of the geometry or morphology of the im-
age surface. Consequently, such methods tend to respond
well only to a relatively narrow set of image morpholo-
gies. Efforts to overcome this limitation and to generalise
such methods to capture a broader range of salient image
regions have had limited success. For example, one ap-
proach is to combine the output of a bank of ‘complemen-
tary’ feature detectors (13). However, such methodolo-
gies must address the cue integration problem, to which
a satisfactory solution remains elusive to date.

In practice, such limitations become manifest in a
number of ways, dependent on the particular application
of interest. For example, in some applications such as
image matching and registration, representations of im-
ages based on Corner or blob-based Interest point detec-
tors can be useful since large numbers of points can be
employed to estimate global transforms. In contrast how-
ever, recognition tasks benefit from compact descriptions
to facilitate fast matching. In such applications, the rela-
tively narrow set of feature morphologies to which such
operators respond, results in a poor representation of the
object class. To overcome this, large numbers of such fea-
tures may be used, but at a penalty of increased compu-
tational load. Finally, as has been noted elsewhere (14),
where image features do not correspond to the restricted
saliency model, the scale selection of such detectors is
poor.

We argue that a set of features derived from a more
general definition of saliency can overcome such limita-
tions and provide high quality compact representations of
the image beneficial for tasks such as recognition, track-
ing and matching.
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SCALE SALIENCY

Recently, we have proposed a novel approach to feature
saliency (10), termed Scale Saliency. Motivated by the
work of Gilles (6), our technique deems ‘salient’ those
regions exhibiting unpredictable characteristics simulta-
neously in some feature-space and over scale.

In our formulation, Scale Saliency is a product of two
terms, each a function of the PDF of local image at-
tributes (e.g. intensity, colour) at multiple scales : HD

(Shannon Entropy) and WD – which measure feature-
space and inter-scale unpredictability, respectively. Ex-
trema in HD are used as the basis for scale selection.
Under such a scheme the multi-scale representation is
implicit in the estimation of the local PDF (e.g. using
a histogram) at multiple scales. Critically, conventional
blurring or wavelet decomposition methods are avoided
since such methods alter the local image statistics.

Intuitively, the method works as follows. HD, the en-
tropy of local attributes measures the predictability of a
region with respect to an assumed model of simplicity. In
the case of entropy of local intensities, the model of sim-
plicity is a region with a single intensity value. In such
a scheme, the simplest and hence least salient region is a
piecewise constant region. For example, consider the im-
age in Figure 1. At a particular scale, the PDF of intensi-
ties in the eye region is flatter and hence has a higher en-
tropy than that of the cheek region. Other attributes may
be used to define alternative benchmarks against which
a regions predictability is measured. For example, edge
orientations, colour, optical flow, or texture may be used
(9, 10). WD, the measure of inter-scale saliency applies
a second constraint to salient features — that they are un-
predictable over scale.

WD is simply a measure of the magnitude change in
the local PDF as a function of scale. This places a ge-
ometric constraint on the spatial configurations of pix-
els which maximise Scale Saliency. For example, the
circular window used in (10) biases the method towards
isotropic features. In this paper, we present a generalisa-
tion of this restriction that allows the method to become
invariant to the full set of Affine transformations. Further
details and analyses of the Scale Saliency method may be
found in (9, 10).

In the discrete case, Scale Saliency is defined as:

YD(sp,x) , HD(sp,x) WD(sp,x) (1)

where entropy HD is defined by:

HD(s,x) , −
∑

d∈D

pd,s,x log
2
pd,s,x (2)

and where pd,s,x is the probability as a function of scale
s, position x and descriptor value d which takes on val-
ues in D, the set of all descriptor values. The inter-scale
saliency measure, WD(s,x), is defined by:

WD(s,x) ,
s2

2s − 1

∑

d∈D

|pd,s,x − pd,s−1,x| (3)

Figure 1: High saliency regions, such as the eye, exhibit
unpredictable local intensity hence high entropy. Image
from NIST Special Database 18, Mugshot Identification
Database.

Figure 2: Salient scale region selection and salient icons
(10% most salient shown) are robust to rotation (45◦

clockwise) and scaling (60% of original size).

The set of scales sp, at which entropy peaks, is defined
by:

sp , {s : HD(s − 1,x) < HD(s,x) > HD(s + 1,x)}
(4)

Scale Saliency possesses a number of attractive prop-
erties. It is invariant to similarity transforms and in-
tensity shifts, and robust to small changes in viewpoint
and intensity scalings. It offers a more general model
of feature saliency and scale compared to conventional
feature detection techniques, such as those employing
basis projection, differential geometry or Scale-Space
approaches. It also incorporates an intrinsic notion of
inter-scale saliency and thereby provides a technique for
scale-selection. Compared to visual search and attention
techniques such as (8), Scale Saliency offers a coherent
methodology; its relation to tasks such as cue selection
and image description are well understood and closed-

2



Figure 3: Comparing the original isotropic (top) and
modified anisotropic (bottom) Scale Saliency algorithms.

form expressions for its maximisation exist.
Figure 2 illustrates the Scale Saliency algorithm ap-

plied to three versions of a face image: the original, a
60% scaled, and a 60% scaled and 45◦ rotated. The white
circles show the 10% most salient regions at their respec-
tive scales. The example demonstrates that the algorithm
can select relevant features that are stable across similar-
ity transformations. The images on the right are the so-
called Sparse Iconic Representation proposed by Gilles
(6) as a minimal representation of an image.

ANISOTROPIC SCALE SALIENCY

In this section, we generalise the circular sampling func-
tion to the anisotropic case using an ellipse parameterised
by a scale parameter, a rotation and aspect ratio. This
modification enables the method to become invariant to
anisotropic scaling and shear; that is, the full affine set of
transformations. Another benefit is that orientation infor-
mation can be captured. Similar approaches have been
used to generalise Corner based interest point detectors
to the affine invariant case (1, 12).

The modification is quite straight-forward and re-
quires replacing the single parameter sampling function
with a three-parameter version. The entropy is calculated
at each step of each of the three parameters. There is no
need to modify, WD, the inter-scale saliency because as
shown in (9) the shape that causes the largest WD is the
one that matches the feature shape. Furthermore, includ-
ing the rotation angle in WD would cause a bias against

Figure 4: The anisotropic Scale Saliency applied to a
Cheetah image and its stretched version. The 0.5% (by
number) clustered most salient features are shown. In
each case, many of the Cheetah’s spots are correctly iden-
tified at their appropriate local (anisotropic) scale.

isotropic features. Similarly, the peak detection is not
modified. As in the isotropic case, scales are selected
at peaks of entropy over scale.

Equations 2 to 4 can be modified for the anisotropic
case by replacing the scalar s parameter with a vector,
s = (s, r, θ) corresponding to the scale, ratio and orien-
tation. The vector of scales at which the entropy peaks,
sp, becomes a matrix, Sp with three rows, one for each
of the scale variables and as many columns as peaks at
that position. For completeness, the modified equations
are as follows:

YD(Sp,x) , HD(Sp,x) WD(Sp,x) (5)

HD(s,x) , −
∑

d∈D

pd,s,x log
2
pd,s,x (6)

WD(s,x) ,
s2

2s − 1

∑

d∈D

|pd,s,x − pd,s−1,x| (7)

Sp , {s : HD(s − 1,x) < HD(s,x) > HD(s + 1,x)}
(8)

The original isotropic and modified anisotropic Scale
Saliency algorithms are compared in Figure 3 where they
have been applied to a synthetic image. The anisotropic
version correctly identifies the scales of the ellipses and
the circle, whereas the isotropic version correctly detects
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only the circle and finds numerous features along the el-
lipses. In Figure 4 the anisotropic Scale Saliency is ap-
plied to an original and stretched version of an image of
a Cheetah. The image sizes for the original and stretched
versions were 262x340 and 340x340 respectively. The
features have been thresholded and clustered using the
algorithm described in (10) (modified to work in this new
space). The parameters of the clustering were set such
that the images shown are fairly clear. It can be observed
that in both images many of the spots (in this case the
most salient features) have been identified at a scale, el-
lipse ratio and orientation that is appropriate to the local
feature. The extra information brought through the use of
the three parameter scale-space provides a more accurate
representation of the image and a richer descriptor set.

However, it should be noted that we have found the
modified algorithm to be quite sensitive to noise in the
image and further developments are necessary before this
approach can be applied. For example, alternative param-
eterisations of the ellipse might prove more stable, for
example using the scales of the two axes and a rotation.
Ultimately this becomes an issue of statistical geometry.
Another problem is that the increased parameterisation
results in large increase in computational load; process-
ing time for Figure 4 was 160 seconds. However, it is
expected that there may be many opportunities for op-
timisation, for example by using local adaptation in the
manner of (5, 6). Such investigations are ongoing.

CONCLUSION

In this paper, we have presented an overview of the Scale
Saliency algorithm. Scale Saliency offers are more gen-
eral model of feature saliency compared to conventional
methods and also possesses some attractive properties
such as photometric robustness and similarity invariance.
The output of the algorithm is a set of locations and scales
ranked in order of saliency. These may be used as a ba-
sis for compact representations on images which facilitate
matching and recognition tasks. We have also presented a
generalisation of the algorithm which extends the method
to full affine invariance.
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