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Abstract
We address the problem of detection and tracking of mov-

ing objects in a video stream obtained from a moving air-
borne platform. The proposed method relies on a graph rep-
resentation of moving objects which allows to derive and
maintain a dynamic template of each moving object by en-
forcing their temporal coherence. This inferred template
along with the graph representation used in our approach
allows us to characterize objects trajectories as an optimal
path in a graph. The proposed tracker allows to deal with
partial occlusions, stop and go motion in very challenging
situations. We demonstrate results on a number of different
real sequences. We then define an evaluation methodology
to quantify our results and show how tracking overcome de-
tection errors.

1 Introduction
The increasing use of video sensors, with Pan-Tilt and

Zoom capabilities or mounted on moving platforms in
surveillance applications, have increased researchers atten-
tion on processing arbitrary video streams. The processing
of a video stream for characterizing events of interest relies
on the detection, in each frame, of the objects involved, and
the temporal integration of this frame based information to
model simple and complex behaviors. This high level de-
scription of a video stream relies on accurate detection and
tracking of the moving objects, and on the relationship of
their trajectories to the scene.

In this paper, we address the problem of detecting and
tracking moving objects in the context of video surveillance.
Most of the techniques used for this problem deal with a sta-
tionary camera [4, 3] or closed world representations [8, 6]
which rely on a fixed background or a specific knowledge
on the type of actions taking place. We deal with a more

challenging type of video streams: the one obtained from a
moving airborne platform. This more general case allows
us to evaluate the proposed approach for processing video
streams acquired in real world video surveillance situations.

We propose an approach which relies on agraph repre-
sentationof detected moving regions for deriving a robust
tracker. The detection phase performed after the compensa-
tion of the image flow induced by the motion of observation
platform produces a large number of regions. Indeed, the
use residual flow field and its normal component,i.e. nor-
mal flow, to locate moving regions also detects the registra-
tion errors due to local changes not correctly handled by the
stabilization as well as 3D structuresi.e. parallax. Defining
an attributed graph where each node is a detected region and
each edge is a possible match between two regions detected
at two different frames, provides an exhaustive representa-
tion of all detected moving objects. This graph representa-
tion allows us to maintain adynamic templateof all moving
objects which is used for their tracking. Moreover, the graph
is used to characterize objects trajectories through anoptimal
search pathalong each graph’s connected component.

The paper is organized as follows; we first describe in sec-
tion 2 the detection technique used. The graph representation
and the dynamic template inference are described respec-
tively in sections 3 and 4. Section 5 presents the method used
for deriving objects trajectories from the associated graph.
Finally, in section 6 we describe the evaluation technique
used for quantifying the results obtained on the set of pro-
cessed videos.

2 Detection of Moving Objects
Most available techniques for detecting moving objects

have been designed for scenes acquired by a stationary cam-
era. These methods allow to segment each image into a set
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of regions representing the moving objects by using a back-
ground differencing algorithm [6, 4]. More recently, [3] have
proposed a local modeling of the background using a mixture
of K-Gaussian allowing to process video streams with time
varying background. These methods give satisfactory results
and can be implemented for real time processing without
dedicated hardware.

The availability of video sensors, at low cost, with Pan-
Tilt and Zoom capabilities or video streams acquired by
moving platforms, have focused the attention of researchers
on the detection of moving objects in a video streams ac-
quired by a moving platform. In this case, the background
differencing techniques cannot be used. They have to rely
on a stabilization algorithm in order to cancel the camera
motion. Such a two-step technique,i.e. stabilization and de-
tection, does not perform perfectly since the detection tech-
niques based on background differencing assume a perfect
stabilization. Indeed, stabilization algorithms use an affine
or perspective model for motion compensation and the qual-
ity of the compensation depends on the observed scene and
on the type of acquisition (i.e. Pan-Tilt-Zoom, arbitrary mo-
tion...). Therefore, the motion compensation is not error free
and induces false detection. However, one can use the tem-
poral coherence of the detected regions in order to increase
the accuracy of the moving object detection [10].

Instead of using this two-step approach, we propose to in-
tegrate the detection into the stabilization algorithm by locat-
ing regions of image where a residual motion occurs. These
regions are detected using the normal component of the op-
tical flow field.

Normal flow is derived from image spatio-temporal gra-
dients of the stabilized image sequence. Each frame of this
image sequence is obtained by mapping the original frame
to the selected reference frame. Indeed, letTij denote the
warping of the imagei to the reference framej. The map-
ping function is defined by the following equation:

Tij =
Y

k=i;::;j+1

Tk;k�1 (1)

and the stabilized image sequence is defined byIi = Ii(Tij).
The estimation of the mapping function amounts to estimate
the egomotion, based on the camera model which relates 3D
points to their projection in the image plane. The approach
we use, models the image induced flow instead of the 3D
parameters of the general perspective transform [7]. The pa-
rameters of the model are estimated by tracking a small set
of feature points(xi; yi) in the sequence. Given a reference
imageI0 and a target imageI1, image stabilization consists
of registering the two images and computing the geometric

transformationT that warps the imageI1 such that it aligns
with the reference imageI0. The parameter estimation of
the geometric transformT is done by minimizing the least
square criterion:

E =
X

i

fI0(xi; yi)� I1(T (xi; yi))g
2 (2)

where outliers are detected and removed through an itera-
tive process. We choose an affine model, which approxi-
mates well the general perspective projection, while having
a low numerical complexity. Furthermore, a spatial hierar-
chy, in the form of a pyramid, is used to track selected fea-
ture points. The pyramid consists of at least three levels and
an iterative affine parameter estimation produces accurate re-
sults.

The reference frame and the warped one do not, in gen-
eral, have the same metric since, in most cases, the mapping
functionTij is not a translation but a true affine transform,
and therefore influences the computation of image gradients
for moving object detection. This change in metric can be
incorporated into the optical flow equation associated to the
image sequenceIi in order to detect more accurately the
moving objects. Indeed, the optical flow associated to the
image sequenceI is:

rIir
T Iiw = �rIi

dIi
dt

(3)

wherew = (u; v)T is the optical flow. Expanding the previ-
ous equation we obtain:

rTijrIi(Tij)r
T Ii(Tij)r

TTijw =

�rTijrIi(Tij)(Ii+1(Ti+1;j)� Ii(Ti;j)) (4)

and therefore, the normal floww? is characterized by:

w? = �
(Ii+1(Ti+1;j)� Ii(Ti;j))

krTijrIi(Tij)k
�
rTijrIi(Tij)

krTijrIi(Tij)k
(5)

Althoughw? does not always characterize image motion,
due to the aperture problem, it allows to accurately de-
tect moving points. The amplitude ofw? is large near
moving regions, and becomes null near stationary regions.
Figure 1 illustrates the detection of moving vehicles in
a video stream taken from an airborne platform. We
encourage the reader to view the movie files available
at http://iris.usc.edu/home/iris/icohen/ pub-

lic html/tracking.htm which illustrate the detection on
the raw video sequence and on the projected mosaic.

3 Graph Representation of
Moving Objects

The detection of moving objects in the image sequence
gives us a set of regions which represent the locations where



Figure 1: Detection of several vehicles in a video stream
acquired by an airborne platform.

a motion was detected. The normal component given by
equation (5) allows, given a pair of frames, to detect points
of the image where a motion occur. These points are then
aggregated into regions by considering a thresholded value
of the normal component of the optical flow, and then la-
beled using a 4-connectivity scheme. Each of these con-
nected components represents a region of the image where
a motion was detected.

The purpose of detecting moving objects in video stream
is to be able to track these objects over time and derive a set
of properties from their trajectory such as their behaviors.
Commonly used approaches for tracking are token-based,
when a geometric description of the object is available [2],
or intensity-based (optical flow, correlation...). These tech-
niques are not appropriate for blob tracking since a reliable
geometric description of the blobs cannot be inferred. On the
other hand, intensity-based techniques ignore the geometric
description of the blob. Our approach combines both tech-
niques by incorporating in the representation of the moving
objects both spatial and temporal information. Such a repre-
sentation is provided by agraphstructure where nodes repre-
sent the detected moving regions and edges represent the re-
lationship between two moving regions detected in two sep-
arate frames. Each newly processed frame generates a set of
regions corresponding to the detected moving objects. We
search for possible similarities between the newly detected
objects and the previously ones. Establishing such connec-
tions can be done through different approaches such as tem-
plate matching [5] or correlation [11]. However, in video
surveillance, little information about the moving object is
available, since the observed objects are of various types.
Also, objects of small size (humans in airborne imagery) or
large changes of objects size are frequent and therefore un-
suitable for template matching approaches.
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Figure 2:Detected regions and associated graph.

Each pair of frames gives us a set of regions where resid-
ual motion was detected (see Figure 2). These regions can be
related to the previously detected one by measuring the gray
level similarity between a region at timet and a set of regions
at timet+1 located in its neighborhood. A region may have
multiple matches, and the size of this neighborhood is ob-
tained from the objects motion amplitude. In Figure 2 we
show the graph representation associated to the detected red
blob. Each node is a region represented by an ellipsoid de-
rived from the principal directions of the blob and the asso-
ciated eigenvalues. Also, a set of attributes is associated to
each node as illustrated in Figure 3. We assign to each edge
a cost which is the likelihood that the regions correspond to
the same object. In our case, the likelihood function is the
image gray level correlation between a pair of regions.

4 Dynamic Template Inference
The graph representation gives an exhaustive description

of the regions where a motion was detected, and the way
these regions relate one to another. This description is ap-
propriate for handling situations where a single moving ob-
ject is detected as a set of small regions. Such a situation
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Figure 3: Description of the attributes associated to each
node of the graph. Each color represents a moving region.

happens when, locally, the normal component of the optical
flow is null (aperture problem) and consequently, instead of
detecting one region, we have a set of small regions. Usu-
ally, clustering techniques are applied for merging the de-
tected blobs in order to recover the region corresponding to
the moving object. These image-based techniques [6, 9] rely
on the proximity of the blobs in the image and frequently
merge regions that belong to separate objects.

Among the detected regions some small regions should
be merged into a larger region, or have a trajectory of their
own. In both cases, based on the graph representation, these
regions belong to a connected component of the graph. In
our approach, we cluster the detected regions in the graph
rather than in a single image as used in previous works [6, 9].
Indeed, clustering through the graph prevents us from merg-
ing regions belonging to objects having a distinct trajectory,
since the clustering based on image proximity, is done within
a connected component of the graph.

The robustness of the clustering technique is also im-
proved by maintaining a dynamic template of the moving
objects for each connected component and therefore for each
moving object in the scene. Several techniques were pro-
posed for automatically updating a template description of
the moving objects; weighted shape description [9] or cu-
mulative motion images [1] were proposed. The main draw-
back of these approaches is that error in shape description
(i.e. boundaries) are propagated and therefore these tech-
niques are not suitable for moving camera. We propose an
approach based onmedian shape templatewhich is more
stable and produces a robust description of templates. The
templates are computed by applying a median filter (after
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Figure 4: Propagation of the nodes in order to recover the
description of undetected objects. On the left we show the
detected region at each frame and, on the right, the asso-
ciated graph where the red node represents a node inferred
from the median shape of the template.

aligning the centroid and the orientation of each blob) over
the last five detected frames of the region.

The dynamic template allows completing the graph de-
scription. In video surveillance applications, objects often
stop, then resume their motion, such an object will be de-
scribed through several connected components in the graph.
These connected components are merged by using the dy-
namic template, of the object being tracked: we propagate
each node without a successor, into a given number of frames
and search for the matching regions in these areas. This de-
fines a set of possible matches, which are incorporated in
the graph structure by defining new edges connecting the
matched regions. This step is illustrated in figure 4, where
the object, not detected in frame 104, is represented by the
red node in the graph.

5 Extraction of Objects Trajectories
As new frames are acquired and processed, we incremen-

tally construct the graph representation of moving objects.
Deriving the trajectories of the objects from the graph and
from the newly detected regions amounts to extract a path
along each graph’s connected component. We propose an
approach for automatically extracting the trajectories of all
moving objects through the search of an optimal path rep-
resenting object’s trajectory. Furthermore, the starting node
(source) as well as the destination node (goal) are not known
in advance. We therefore, consider each graph node without
a parent as a potential source node, and each node without a



            

Figure 5:Trajectories of the truck and the car mapped on the generated mosaic.

successor as a potential goal node.
Defining an optimality criterion to characterize an opti-

mal path is equivalent to associating to each edge of the
graph a cost. Each edge of the graph corresponds to a match
between two regions and has a cost which is the similarity
measure between the connected nodes. Therefore, a set of
properties associated to each node such as the gray level dis-
tribution, the centroid and the dynamic template of the object
are used in order to infer a robust path. These properties are
merged in the following cost associated to each edge of the
graph:

cij =
Cij

1 + d2ij
(6)

where,Cij is the gray level and shape correlation between
regionsi andj, anddij represents the distance between their
centroids.

The edge cost given by equation (6) allows to extract the
local optimal path. Indeed, a graph search algorithm based
only on the edge cost will provide a sub-optimal solution
since there are no constraints on the destination or goal node
that have to be reached. In the different experiments led,
we have observed that this criterion yields a part of the tra-
jectory. The goal source was selected based on the highest
value of the cost regardless of the other nodes belonging to
the same connected component.

In the graph description used each connected component
of this graph represents a moving object in the scene and
the location of each node in the graph allows to characterize
how far this node is from a potential goal node: a newly
detected region. Such a characterization is done by assigning
to each node the maximal length of graph’s path starting at
this node. The computation of thenode’s lengthis carried

very efficiently by starting at the bottom of the graph, i.e.
nodes without successor, and assigning for each parent node
the maximum length of his successors plus one. The length
of a nodei is given by the following equation:

li = maxflj ; j 2 successor(i)g+ 1 (7)

with the initial estimate:li = 1; if successor(i) = 0.
The combination of the cost function (6) and the length of
each node allows us to define a new cost function for each
node. The cost function associated to the edge connecting
the nodei to the nodej is then defined by:

Cij = ljcij (8)

wherecij is defined by (6) andlj is the length of the node
j defined by equation (7). This cost function recovers the
optimal path among the paths starting at the node being ex-
panded.

The extraction of the optimal path is done by
starting at graph’s nodes without parent and expand-
ing the node with maximal value ofCij . This ap-
proach is illustrated in Figure 5, where the trajec-
tories of a truck and a car are displayed. The
AVI files of the processed video streams are available
at http://iris.usc.edu/home/iris/icohen/ pub-

lic html/tracking.htm .

6 Evaluation and Quantification
Our approach is based on a temporal integration of the

moving objects over a certain number of frames which we
call: the system’slatency time(set here to five frames).
This latency time, or delay, helps us in selecting the mov-
ing regions, and distinguish these blobs from inaccuracies



due to the compensation of the camera’s motion. Moreover,
the confidence in the extracted moving region increases as
new occurrences of the objects are detected in the processed
frames. Indeed, the length (see eq. 7) associated to each
graph’s node (i.e. moving region) represents the number of
frames in which the object was detected. This scalar value al-
lows us to discard detected blobs which are due to misregis-
tration of the motion compensation algorithm, since these re-
gions have no temporal coherence, characterized by a small
length. Table 1 gives some results obtained over several set
of video streams acquired by the Predator UAV (Unmanned
Airborne Vehicle) and VSAM (Video Surveillance and Ac-
tivity Monitoring) platforms. These video streams represent
a variety of scenes involving human activity, and were used
to evaluate the performance of our system.

The numerical values represent the outputs obtained at
different stages of processing. The ”Moving Objects” col-
umn represents the true number of objects moving in the
video stream, and was provided by the user. The next two
columns represent the output of the detection and tracking
sub-modules respectively. As we can see, the number of
regions detected is fairly large compared to the number of
moving objects. These numbers correspond to the number
of regions where the normal flow field was larger than a
given threshold (10�5, in all the experiments). The detec-
tion column gives the distribution’s plot of the number of
these regions over the processed sequence. Also, the associ-
ated mean and variance are given as indicative values. The
temporal integration of these regions, over a set of frames, al-
lows us to reduce this number of regions (given in the fourth
column) and discardfalse detections, since regions due to
noise are not temporally coherent. However, some inaccu-
racies of the egomotion model, or the presence of a parallax
can cause some regions to have a coherent temporal signa-
ture. Finally, the column “paths”, represents the number of
trajectories considered as valid,i.e. coherent temporal re-
gions detected for more than 10 frames, which represents
the latency time used in the tracking. In some cases, the
number of trajectories is larger than the number of moving
objects in the stream. This is due to object trajectories being
fragmented into several paths, and to failures in matching
similar regions representing the same object. The remaining
trajectories are due to regions with good temporal coherence
which do not correspond to moving objects, and are, mostly,
due to strong parallax.

Finally, we have defined two metrics for characterizing
theDetection Rate(DR) and theFalse Alarm Rate(FAR) of
the system. These rates, used to quantify the output of our
system, are based on:

� TP (true positive): detected regions that correspond to
moving objects,

� FP (false positive): detected regions that do not corre-
spond to a moving object,

� FN (false negative): moving objects not detected.

These scalars are combined to define the following metrics:

DR =
TP

TP + FN
and FAR =

FP

TP + FP

These metrics are reported in table 1. As the number of
moving objects is small, these measurements may have large
variances. This table shows that the large number of moving
objects generated by the detection is reduced by the track-
ing, leading to a perfect detection rate in all examples. The
large FAR in the last two experiments is due to 3D struc-
tures. In this case a further processing is needed in order to
distinguish motion from parallax.

7 Conclusion
We have addressed several problems related to the analy-

sis of a video stream. The framework proposed is based on a
graph representation of the moving regions extracted from a
video acquired by a moving platform. The integration of the
detection and tracking in this graph representation allows to
dynamically infer a template of all moving objects in order to
derive a robust tracking in situations such as stop and go mo-
tion and partial occlusion. Finally, the quantification of the
results through the definition of the metricsDR andFAR
provides a confidence measure characterizing the reliability
of each extracted trajectory.

The obtained results will be improved by further process-
ing the false alarms in order to discard the trajectories due
to regions with good temporal coherence which do not cor-
respond to moving objects, and these are, typically, regions
due to strong parallax.
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