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Abstract challenging type of video streams: the one obtained from a

We address the problem of detection and tracking of m@Qoving airborne platform. This more general case allows
ing objects in a video stream obtained from a moving ai#s to evaluate the proposed approach for processing video
borne platform. The proposed method relies on a graph regfreams acquired in real world video surveillance situations.
resentation of moving objects which allows to derive and We propose an approach which relies ograph repre-
maintain a dynamic template of each moving object by egentationof detected moving regions for deriving a robust
forcing their temporal coherence. This inferred templatéacker. The detection phase performed after the compensa-
along with the graph representation used in our approadi®n of the image flow induced by the motion of observation
allows us to characterize objects trajectories as an optimlatform produces a large number of regions. Indeed, the
path in a graph. The proposed tracker allows to deal withse residual flow field and its normal componerm, nor-
partial occlusions, stop and go motion in very challengirgal flow to locate moving regions also detects the registra-
situations. We demonstrate results on a number of differéan errors due to local changes not correctly handled by the
real sequences. We then define an evaluation methodo®igpilization as well as 3D structures. parallax Defining
to quantify our results and show how tracking overcome d@a attributed graph where each node is a detected region and

tection errors. each edge is a possible match between two regions detected
) at two different frames, provides an exhaustive representa-
1 Introduction tion of all detected moving objects. This graph representa-

The increasing use of video sensors, with Pan-Tilt atidn allows us to maintain dynamic templatef all moving
Zoom capabilities or mounted on moving platforms iobjects which is used for their tracking. Moreover, the graph
surveillance applications, have increased researchers atiensed to characterize objects trajectories througiptimal
tion on processing arbitrary video streams. The processs&arch pathalong each graph’s connected component.
of a video stream for characterizing events of interest reliesThe paper is organized as follows; we first describe in sec-
on the detection, in each frame, of the objects involved, aish 2 the detection technique used. The graph representation
the temporal integration of this frame based information &md the dynamic template inference are described respec-
model simple and complex behaviors. This high level dively in sections 3 and 4. Section 5 presents the method used
scription of a video stream relies on accurate detection &od deriving objects trajectories from the associated graph.
tracking of the moving objects, and on the relationship Binally, in section 6 we describe the evaluation technique
their trajectories to the scene. used for quantifying the results obtained on the set of pro-

In this paper, we address the problem of detecting apekssed videos.
tracking moving objects in the context of video surveillance.

Most of the techniques used for this problem deal with a s&- Deétection of Moving Objects

tionary camera [4, 3] or closed world representations [8, 6] Most available techniques for detecting moving objects
which rely on a fixed background or a specific knowledd®ve been designed for scenes acquired by a stationary cam-
on the type of actions taking place. We deal with a moega. These methods allow to segment each image into a set



of regions representing the moving objects by using a battansformatiory” that warps the imag# such that it aligns
ground differencing algorithm [6, 4]. More recently, [3] havaiith the reference imagé,. The parameter estimation of
proposed a local modeling of the background using a mixtuhe geometric transforrf is done by minimizing the least
of K-Gaussian allowing to process video streams with tinsguare criterion:
varying background. These methods give satisfactory results 2

E= In(zi,yi) — I i Yi 2
and can be implemented for real time processing without zi:{ o(@i yi) = (T (i, 9i))} 2)

dedicated hardware. . .
- . . where outliers are detected and removed through an itera-
The availability of video sensors, at low cost, with Pan- . . )
, - . . tive process. We choose an affine model, which approxi-
Tilt and Zoom capabilities or video streams acquired b

. . rXates well the general perspective projection, while havin
moving platforms, have focused the attention of research 9 Persp pro) 9

er . . -
. . . . : a I%w numerical complexity. Furthermore, a spatial hierar-
on the detection of moving objects in a video streams ac- . L
. . . chy, in the form of a pyramid, is used to track selected fea-
quired by a moving platform. In this case, the backgroun . : :
. . ] tLiI’e points. The pyramid consists of at least three levels and
differencing techniques cannot be used. They have to rely. . , L
o . . an iterative affine parameter estimation produces accurate re-
on a stabilization algorithm in order to cancel the camera

. . S sults.
motion. Such a two-step technique. stabilization and de- .
. P que, . A The reference frame and the warped one do not, in gen-
tection, does not perform perfectly since the detection tech- S : .
. . ) raJ, have the same metric since, in most cases, the mapping
niques based on background differencing assume a perfect’.. . . .
unction7;; is not a translation but a true affine transform,

stabilization. Indeed, stabilization algorithms use an affine . : : .
9 and therefore influences the computation of image gradients

or perspective model for motion compensation and the qual- : : . : : .
. . Or moving object detection. This change in metric can be
ity of the compensation depends on the observed scene and . : . .
A ) . incorporated into the optical flow equation associated to the
on the type of acquisition (i.e. Pan-Tilt-Zoom, arbitrary mo- .
. ) . Image sequencg; in order to detect more accurately the
tion...). Therefore, the motion compensation is not error free = : . .
. . moving objects. Indeed, the optical flow associated to the
and induces false detection. However, one can use the tem- .
. . . Image sequenceis:
poral coherence of the detected regions in order to increase
: . . dz;
the accuracy oflthe n”!ovmg object detection [10]. . VIV Tw = —VT, -~ ©)

Instead of using this two-step approach, we propose to in- t
tegrate the detection into the stabilization algorithm by locatherew = (u,v)? is the optical flow. Expanding the previ-
ing regions of image where a residual motion occurs. Thesgs equation we obtain:
rgglons ar.e detected using the normal component of the op- V%V&(?})VTL'(?})VTEU; _
tical flow field.

Normal flow is derived from image spatio-temporal gra- —VTi;VI(Ti))Tiva (Tigr ) — Ii(Ti ) (4)
dients of the stabilized image sequence. Each frame of thigl therefore, the normal flow, is characterized by:
image sequence is obtained by mapping the original frame (Iiir(Tovr ) = Li(Ti)) VT VI(T:,)
to the selected reference frame. IndeedTigtdenote the w, = —— o _Qobl)) . R

IVTii VIi(Tij) IVTii VIi(Tij) |

warping of the imagé to the reference framg The map- o )
ping function is defined by the following equation: Althoughw, does not always c_haracterlze image motion,
due to the aperture problem, it allows to accurately de-

Tij = H The k1 (1) tect moving points. The amplitude af, is large near
k=i,..,j+1 moving regions, and becomes null near stationary regions.

N ) ) ] Figure 1 illustrates the detection of moving vehicles in
and the stabilized image sequence is definefiby 1i(7i;)- 4 video stream taken from an airborne platform. We

The estimation of the mapping function amounts to estimalfcoyrage the reader to view the movie files available
the egomotion, based on the camera model which relatesé’tDnttp://iris.usc.edu/home/iris/icohen/ pub-

points to their projection in the image plane. The approagh iy racking.htm which illustrate the detection on

we use, models the image induced flow instead of the 3L raw video sequence and on the projected mosaic.
parameters of the general perspective transform [7]. The pa-

rameters of the model are estimated by tracking a small 3et Graph Representation of

of feature pointgz;, ;) in the sequence. Given a reference Moving Objects

imagel, and a target imagé , image stabilization consists The detection of moving objects in the image sequence
of registering the two images and computing the geometgizes us a set of regions which represent the locations where

(®)
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Figure 1: Detection of several vehicles in a video stream
acquired by an airborne platform.

Frame 126

a motion was detected. The normal component given by
equation (5) allows, given a pair of frames, to detect points
of the image where a motion occur. These points are then
aggregated into regions by considering a thresholded value
of the normal component of the optical flow, and then la-
beled using a 4-connectivity scheme. Each of these con-
nected components represents a region of the image where
a motion was detected.

The purpose of detecting moving objects in video stream
is to be able to track these objects over time and derive a set

of properties from their trajectory such as their behaviors. Figure 2:Detected regions and associated graph.
Commonly used approaches for tracking are token-based,

when a geometric description of the object is available [2], g5ch pair of frames gives us a set of regions where resid-

or intensity-based (optical flow, correlation...). These techis| motion was detected (see Figure 2). These regions can be

niques are not appropriate for blob tracking since a reliabl§a e to the previously detected one by measuring the gray
geometric description of the blobs cannotbe inferred. On fage| similarity between a region at timend a set of regions
other .ha.nd, intensity-based techniques \gnore the geomelfigme; 1 1 located in its neighborhood. A region may have
description of the blob. Our approach combines both te¢jytiple matches, and the size of this neighborhood is ob-
niques by incorporating in the representation of the movipg, o4 from the objects motion amplitude. In Figure 2 we
objects both spatial and temporal information. Such a repigy,y the graph representation associated to the detected red
sentation is provided bygraphstructure where nodes reprep o, Each node is a region represented by an ellipsoid de-
sent the detected moving regions and edges represent thgyigy from the principal directions of the blob and the asso-
lationship between two moving regions detected in two Sefiateq eigenvalues. Also, a set of attributes is associated to
arate frames. Each newly processed frame generates a Sghofy node as illustrated in Figure 3. We assign to each edge
regions corresponding to the detected moving objects. WRqst which is the likelihood that the regions correspond to
search for possible similarities between the newly detecrtrﬁg same object. In our case, the likelihood function is the

objects and the previously ones. Establishing such connges e gray level correlation between a pair of regions.
tions can be done through different approaches such as tem-

plate matching [5] or correlation [11]. However, in vided¢t Dynamic Template Inference

surveillance, little information about the moving object is The graph representation gives an exhaustive description
available, since the observed objects are of various typefsthe regions where a motion was detected, and the way
Also, objects of small size (humans in airborne imagery) tirese regions relate one to another. This description is ap-
large changes of objects size are frequent and therefore pnopriate for handling situations where a single moving ob-
suitable for template matching approaches. ject is detected as a set of small regions. Such a situation
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Figure 3: Description of the attributes associated to eadhigure 4: Propagation of the nodes in order to recover the

node of the graph. Each color represents a moving regiondescription of undetected objects. On the left we show the
detected region at each frame and, on the right, the asso-
ciated graph where the red node represents a node inferred

happens when, locally, the normal component of the opti¢@)m the median shape of the template.
flow is null (aperture problem) and consequently, instead of

detecting one region, we have a set of small regions. Usu-
ally, clustering techniques are applied for merging the daligning the centroid and the orientation of each blob) over
tected blobs in order to recover the region correspondingte last five detected frames of the region.
the moving object. These image-based techniques [6, 9] relyThe dynamic template allows completing the graph de-
on the proximity of the blobs in the image and frequenthcription. In video surveillance applications, objects often
merge regions that belong to separate objects. stop, then resume their motion, such an object will be de-

Among the detected regions some small regions shog@ffibed through several connected components in the graph.
be merged into a larger region, or have a trajectory of thdiese connected components are merged by using the dy-
own. In both cases, based on the graph representation, ttieggic template, of the object being tracked: we propagate
regions belong to a connected component of the graph.egch node without a successor, into a given number of frames
our approach, we cluster the detected regions in the gra@ptdl search for the matching regions in these areas. This de-
rather than in a single image as used in previous works [6,®)€es a set of possible matches, which are incorporated in
Indeed, clustering through the graph prevents us from melfgg graph structure by defining new edges connecting the
ing regions belonging to objects having a distinct trajectofpatched regions. This step is illustrated in figure 4, where
since the clustering based on image proximity, is done wittifte object, not detected in frame 104, is represented by the
a connected component of the graph. red node in the graph.

The robustness of the clustering technique is also im- ) ) ] ]
proved by maintaining a dynamic template of the moving EXtraction of Objects Trajectories
objects for each connected component and therefore for eaclAs new frames are acquired and processed, we incremen-
moving object in the scene. Several techniques were ptally construct the graph representation of moving objects.
posed for automatically updating a template description [D€riving the trajectories of the objects from the graph and
the moving objects; weighted shape description [9] or ciitem the newly detected regions amounts to extract a path
mulative motion images [1] were proposed. The main draatong each graph’s connected component. We propose an
back of these approaches is that error in shape descriptpproach for automatically extracting the trajectories of all
(i.e. boundaries) are propagated and therefore these tenbving objects through the search of an optimal path rep-
nigues are not suitable for moving camera. We proposerasenting object’s trajectory. Furthermore, the starting node
approach based omedian shape templatghich is more (source) as well as the destination node (goal) are not known
stable and produces a robust description of templates. Thadvance. We therefore, consider each graph node without
templates are computed by applying a median filter (afeeparent as a potential source node, and each node without a




Figure 5:Trajectories of the truck and the car mapped on the generated mosaic.

successor as a potential goal node. very efficiently by starting at the bottom of the graph, i.e.
Defining an optimality criterion to characterize an opthodes without successor, and assigning for each parent node

mal path is equivalent to associating to each edge of the maximum length of his successors plus one. The length

graph a cost. Each edge of the graph corresponds to a mafannodei is given by the following equation:

between two regions and has a cost which is the similarity

measure between the connected nodes. Therefore, a set of

properties associated to each node such as the gray level gig; the initial estimatel; = 1, if successor(i) = 0.

tribution, the centroid and the dynamic template of the objegle compination of the cost function (6) and the length of
are used in order to infer a robust path. These properties @ep, node allows us to define a new cost function for each
merged in the following cost associated to each edge of fig4e  The cost function associated to the edge connecting

graph: o the node to the nodej is then defined by:

Cij = 1 Zdz (6)

+ ij Cij = ljcij (8)
where,C}; is the gray level and shape correlation betwe(\aNr]1

ionsi ands andd ts the dist bet the erec;; is defined by (6) and; is the length of the node
LZ%SEZ:” J, andai; represents the distance between e]”defined by equation (7). This cost function recovers the

optimal path among the paths starting at the node being ex-
The edge cost given by equation (6) allows to extract térgg ded P g P g g

local optimal path. Indeed, a graph search algorithm base he extraction of the optimal path is done by
only on the edge cost will provide a sub-optimal solutio&

. th traint the destinati | rting at graph’s nodes without parent and expand-
since there are no constraints on the destination or goal no§e the node with maximal value of;. This ap-

l; = mazx{l;,j € successor(i)} +1 @)

. _ m
that have to be reached. In the different experiments le Joach is illustrated in Figure 5, where the trajec-

we have observed that this criterion yields a part of the t'{%'ries of a truck and a car are displayed. The

jectory. The goal source was selected based on the h_|g|2\gﬁt files of the processed video streams are available
value of the cost regardless of the other nodes belong|ngc,&ohttp,//iris usc.edu/homeirisficohen/ pub-

the same connected component. . .
. lic _html/tracking.htm

In the graph description used each connected component
of this graph represents a moving object in the scene &d Evaluation and Quantification
the location of each node in the graph allows to characterizeOur approach is based on a temporal integration of the
how far this node is from a potential goal node: a newiypoving objects over a certain number of frames which we
detected region. Such a characterization is done by assigrually the system’datency time(set here to five frames).
to each node the maximal length of graph’s path startingTdtis latency time, or delay, helps us in selecting the mov-
this node. The computation of threde’s lengths carried ing regions, and distinguish these blobs from inaccuracies



due to the compensation of the camera’s motion. Moreovers TP (true positive): detected regions that correspond to
the confidence in the extracted moving region increases as moving objects,

new occurrences of the objects are detected in the processed

frames. Indeed, the length (see eq. 7) associated to each FP (false positive): detected regions that do not corre-
graph’s node (i.e. moving region) represents the number of SPond to a moving object,

frames in which the object was detected. This scalar value al-

lows us to discard detected blobs which are due to misregisf FN (false negative): moving objects not detected.

tration of the motion compensation algorithm, since these figjese scalars are combined to define the following metrics:
gions have no temporal coherence, characterized by a small

length. Table 1 gives some results obtained over several set _ TP and FAR — FP

of video streams acquired by the Predator UAV (Unmanned TP+ FN TP+ FP

Airborne Vehicle) and VSAM (Video Surveillance and ACThese metrics are reported in table 1. As the number of

tivity Monitoring) platforms. These video streams represeﬁ{oving objects is small, these measurements may have large
a variety of scenes involving human activity, and were usgghiances. This table shows that the large number of moving
to evaluate the performance of our system. objects generated by the detection is reduced by the track-
The numerical values represent the outputs obtainedraf, leading to a perfect detection rate in all examples. The
different stages of processing. The "Moving Objects” colarge FAR in the last two experiments is due to 3D struc-
umn represents the true number of objects moving in thees. In this case a further processing is needed in order to
video stream, and was provided by the user. The next tdigtinguish motion from parallax.
columns represent the output of the detection and tracking .
sub-modules respectively. As we can see, the number7of Conclusion
regions detected is fairly large compared to the number of We have addressed several problems related to the analy-
moving objects. These numbers correspond to the num®i&rof a video stream. The framework proposed is based on a
of regions where the normal flow field was larger than @aph representation of the moving regions extracted from a
given threshold {0~7, in all the experiments). The detecvideo acquired by a moving platform. The integration of the
tion column gives the distribution’s plot of the number dietection and tracking in this graph representation allows to
these regions over the processed sequence. Also, the asgygiamically infer a template of all moving objects in order to
ated mean and variance are given as indicative values. HBgVe a robust tracking in situations such as stop and go mo-
temporal integration of these regions, over a set of frames,t#n and partial occlusion. Finally, the quantification of the
lows us to reduce this number of regions (given in the fourf@sults through the definition of the metris? and FAR
column) and discardalse detectionssince regions due toprovides a confidence measure characterizing the reliability
noise are not temporally coherent. However, some inac@fieach extracted trajectory.
racies of the egomotion model, or the presence of a parallax he obtained results will be improved by further process-
can cause some regions to have a coherent temporal sidfigathe false alarms in order to discard the trajectories due
ture. Finally, the column “paths”, represents the number igfregions with good temporal coherence which do not cor-
trajectories considered as valide. coherent temporal re-respond to moving objects, and these are, typically, regions
gions detected for more than 10 frames, which represef to strong parallax.
the latency time used in the tracking. In some cases,
number of trajectories is larger than the number of movi
objects in the stream. This is due to object trajectories bei
fragmented into several paths, and to failures in matching
similar regions representing the same object. The remaining Plates. INCVPR pages 928-934, Puerto-Rico, June
trajectories are due to regions with good temporal coherence 1997. IEEE.
which do not correspond to moving objects, and are, mostl
due to strong parallax.
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