Lucas-Kanade Motion Estimation

Thanks to Steve Seitz, Simon Baker, Takeo
Kanade, and anyone else who helped
develop these slides.



Why estimate motion?

We live in a 4-D world

Wide applications
» Object Tracking
e Camera Stabilization
* Image Mosaics

« 3D Shape Reconstruction
(SFM)

« Special Effects (Match
Move)




Optical flow
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Problem definition: optical flow

./' Q °

W ®
o—> I (@) .
H(z,y) I(z,y)

How to estimate pixel motion from image H to image 1?

» Solve pixel correspondence problem
— given a pixel in H, look forjnearby|pixels of the|same colof in |

Key assumptions

e color constancy: a pointin H looks the same in |
— For grayscale images, this is brightness constancy

 small motion: points do not move very far
This is called the optical flow problem



Optical flow constraints (grayscale images)

(z,9)
\glsplacement = (u,v)

@]
(z + u,y + v)

H(x,vy) I(x,vy)

Let’s look at these constraints more closely
* Dbrightness constancy: Q: what’s the equation?

H(X, y) = I(X+uU, y+V)
« small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of I:

I(x+u, y+v) = I(x, y)—l—ﬂ ﬂfU—I—higher order terms
~ I(z,y) —I— u —|— 5



Optical flow equation

Combining these two equations
shorthand: I, = 91

O0=I(z+uy+v)— H(zy)

The x-component of
~ I(x,y) + Lsu+ Iyv — H(x, y) the gradient vector.
~ (I(z,y) — H(z,y)) + Lou + Iyv
~ It + Ipu + Iyv
~ I+ VI-[u v]

Whatis I, ? The time derivative of the image at (X,y)

How do we calculate it?




Optical flow equation

O=1;+VI-[u v]

Q: how many unknowns and equations per pixel?
1 equation, but 2 unknowns (u and v)

Intuitively, what does this constraint mean?

 The component of the flow in the gradient direction is determined
 The component of the flow parallel to an edge is unknown



Aperture problem




Aperture problem




Solving the aperture problem

Basic idea: assume motion field is smooth

Lukas & Kanade: assume locally constant motion

» pretend the pixel's neighbors have the same (u,v)
— If we use a 5x5 window, that gives us 25 equations per pixel!

0 = Ii(p;) + VI(p;) - [u v]

Many other methods exist. Here’s an overview:

« Barron, J.L., Fleet, D.J., and Beauchemin, S, Performance of optical flow
techniques, International Journal of Computer Vision, 12(1):43-77, 1994.
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Lukas-Kanade flow

How to get more equations for a pixel?

« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel's neighbors have the same (u,v)
» |If we use a 5x5 window, that gives us 25 equations per pixel!

0 = I1(p;) + VI(p;) - [u v]

- I:(p1) Iy(p1) - I;(p1) |
I:(p2) Iy(p2) [ u ] _ | Li(p2)
: : v :
| Iz(p25) Iy(p2s) I (p2s)
2A2 2d1 ’
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RGB version

How to get more equations for a pixel?

« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!

L0l I,(p1)[O] I,(p1)[0]
L(p)]  Iy(p1)[1] T,(p1)[1]
L)) I(p2] [u] 1,(p1)[2]
I(p25)[0] Iy(paz)o] | LY I,(p25)[0]
I:(p25)[1] Iy(p2s)[1] Ii(p25)[1]

| L(p2s)[2] I(pes)2] Li(pas)[2]

A d b

75X2 2x1 75x1
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Lukas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad— b||?
25x2 2x1 25x1

Solution: solve least squares problem
 minimum least squares solution given by solution (in d) of:

(ATA) d= ATh

2X2 2x1 2x1

AT A ATb

IZIxIx zfxfy] [u] _ [ zfmft]

 The summations are over all pixels in the K x K window

* This technique was first proposed by Lukas & Kanade (1981)
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Conditions for solvabillity

 Optimal (u, v) satisfies Lucas-Kanade equation

Shly SLIy|[u]_ [ LI
SLely Sy || v |~ | Sy

AT A Al

When is This Solvable?

 ATA should be invertible
 ATA should not be too small due to noise

— eigenvalues A, and A, of ATA should not be too small
* ATA should be well-conditioned

— M/ A, should not be too large (A, = larger eigenvalue)
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Edges cause problems
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— large gradients, all the same

— large A, small A,
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Low texture regions don’t work

S vi(v?!
— gradients have small magnitude
—small A,, small A,
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High textured region work best

i il = @ @ o "~
\ ) : . c |

Svi(vint IS B\
— gradients are different, large magnltudes P

— large A4, large A,
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Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
e Suppose ATA is easily invertible
» Suppose there is not much noise in the image

When our assumptions are violated
» Brightness constancy is not satisfied
* The motion is not small

« A point does not move like its neighbors
— window size is too large
— what is the ideal window size?
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Revisiting the small motion assumption

Is this motion small enough?
* Probably not—it's much larger than one pixel (2" order terms dominate)
 How might we solve this problem? 19



Reduce the resolution!




Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=>5 pixels
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Gaussian pyramid of image |

Gaussian pyramid of image H



Coarse-to-fine optical flow estimation
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Gaussian pyramid of image |

Gaussian pyramid of image H



A Few Detalls

 Top Level

Apply L-K to get a flow field representing the flow from the
first frame to the second frame.

Apply this flow field to warp the first frame toward the second
frame.

Rerun L-K on the new warped image to get a flow field from
it to the second frame.

Repeat till convergence.

Next Level

Upsample the flow field to the next level as the first guess of
the flow at that level.

Apply this flow field to warp the first frame toward the second
frame.

Rerun L-K and warping till convergence as above.

Etc.
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The Flower Garden Video

What should the
optical flow be?




Robust Visual Motion Analysis:
Piecewise-Smooth Optical Flow

Ming Ye
Electrical Engineering
University of Washington
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Structure From Motion

Rigid scene + camera translation

Estimated horizontal motion

Depth map
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Scene Dynamics Understanding

Brighter
pixels =>
larger
speeds.

Estimated horizontal motion
o Surveillance
 Event analysis
* Video compression

Motion
boundaries
are smooth.

Motion smoothness
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Target Detection and Tracking

A tiny airplane --- only
observable by its distinct
motion

Tracking results
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Results from Prior Methods:

Sampled by2: True LS-LS LS-R R-R
LS = Least Squares, LS-R = Robust Least Squares, R = new robust method

Confidence

Horizontal flow: M-OFC LS-LMedS LS-R R-R

M-OFC = solving the optical flow constraint using the M-Estimator
LMedS = Least Median of Squares 29



Estimating Piecewise-Smooth Optical
Flow with Global Matching and
Graduated Optimization

A Bayesian Approach
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Problem Statement

Assuming only brightness conservation
and piecewise-smooth motion, find the
optical flow to best describe the intensity
change in three frames.
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Approach: Matching-Based Global

Optimization

e Step 1. Robust local gradient-based method for
high-quality initial flow estimate.

o Step 2. Global gradient-based method to improve the
flow-field coherence.

e Step 3. Global matching that minimizes energy by a
greedy approach.
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Global Energy Design

Global energy V is the optical flow field.

E= Y E (V) +Eg (V) |Vsis trlle optical flow
Matching error allsitess at pixel s.

« Warping error E; is the brightness

Eg (V) = p(ey, (V). 05 )| conservation.

eW(Vs):min(l I_(Vs)_ Is |1| I+(Vs)_ Is |)

Smoothness error

I~ and I* are prev & next frame; |- (V s) is the warped intensity in prev frame.

E is the flow smoothness

error in a neighborhood E.(V.) =% Z:,O(|Vs =V, |,05.)

about pixel s. neN®

X2

o’ +X° 33

Error function:  p(X0o)=



Step 1. Gradient-Based Local Regression

e A crude flow estimate is assumed available

e A robust gradient-based local regression is used
to compute the incremental flow AV.

 The dominant translational motion in the
neighborhood of each pixel is computed
by solving a set of flow equations using a
least-median-of-squares criterion.
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Step 2: Gradient-Based Global Optimization

* The coherence of AV using a gradient-based global
optimization method.

 The energy to minimize is given by

EAV)= S {p(e, (Avs),ass)% S p(IV, +AV, -V, — AV, |, o5 )}

allsites s neNg

where e, Is the residual of the OFC,
V, Is the ith vector of the initial flow, and
the sigmas are parameters.

35



Step 3: Global Matching

 The new flow estimate still exhibits gross errors at
motion boundaries and other places with poor
gradient estimates.

* This error is reduced by solving the matching-based
formulation equation through greedy propagation.

 The energy is calculated for all pixels.

e Then each pixel is visited, examining whether a trial
estimate from the candidates in its neighborhood
IS better (lower energy). If so, this becomes the
new estimate for that pixel. This is repeated iteratively.
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Overall Algorithm
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Advantages

Best of Everything
e Local OFC
— High-quality initial flow estimates
— Robust local scale estimates
e Global OFC
— Improve flow smoothness
* Global Matching

— The optimal formulation

— Correct errors caused by poor gradient quality and hierarchical
process

Results: fast convergence, high accuracy, simultaneous motion
boundary detection
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Experiments

 EXperiments were run on several standard test videos.

e Estimates of optical flow were made for the middle
frame of every three.

 The results were compared with the Black and
Anandan algorithm.
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TS: Translating Squares

Homebrew, ideal setting, test performance upper bound

D
il

64x64, 1pixel/frame

Groundtruth (cropped),
Our estimate looks the same
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te Plots
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[T: Translating Tree

e e——
150x150 (Barron 94)
eé (O ) e|.| (pix) §(pix) zg\
BA | 260 0.128 0.0724
S3 | 0.248 0.0167 0.00984

=

e: error in pixels, cdf: culmulative distribution function for all pixels
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DT: Diverging Tree

i ' i
150x150 (Barron 94) o
eé (O) e|.| (pix) §(pix) :: I zg\
BA | 6.36 0.182 0.114 .
S3 | 260 0.0813 0.0507
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YOS: Yosemite Fly-Through

. b )
k , I'J [0 o 0 "-50.5-

316x252 (Barron, cloud excluded) *¢

BA
e, () €lx) e(m) | .l >
BA | 2.71 0.185 0.118 mﬁ
S3 | 192 0.120 0.0776 D o5 ; B
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TAXI: Hamburg Taxi

max speed 3.0 pix/frame

Error map Smoothness error




512x512
(Nagel)
max speed.:

SRS M 6.0 pix/frame
L ABR:B1:B3:85.

Error map Smoothness errdf




Pepsi Can

201x201
(Black)
Ma_x speed: ours
3 2pix/frame
Smoothness
BA error
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Flower Garden

FG

48



Contributions (1/2)

Formulation

* More complete design, minimal parameter tuning
— Adaptive local scales
— Strength of two error terms automatically balanced

« 3-frame matching to avoid visibility problems
Solution: 3-step optimization
* Robust initial estimates and scales

* Model parameter self-learning
* Inherit merits of 3 methods and overcome shortcomings
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Contributions (2/2)

Results
* High accuracy
* Fast convergence
e By product: motion boundaries

Significance

* Foundation for higher-level (model-based) visual motion
analysis

 Methodology applicable to other low-level vision problems

50
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