The Kadir Operator Saliency, Scale and Image Description

Timor Kadir and Michael Brady University of Oxford

The issues...

 salient – standing out from the rest, noticeable, conspicous, prominent

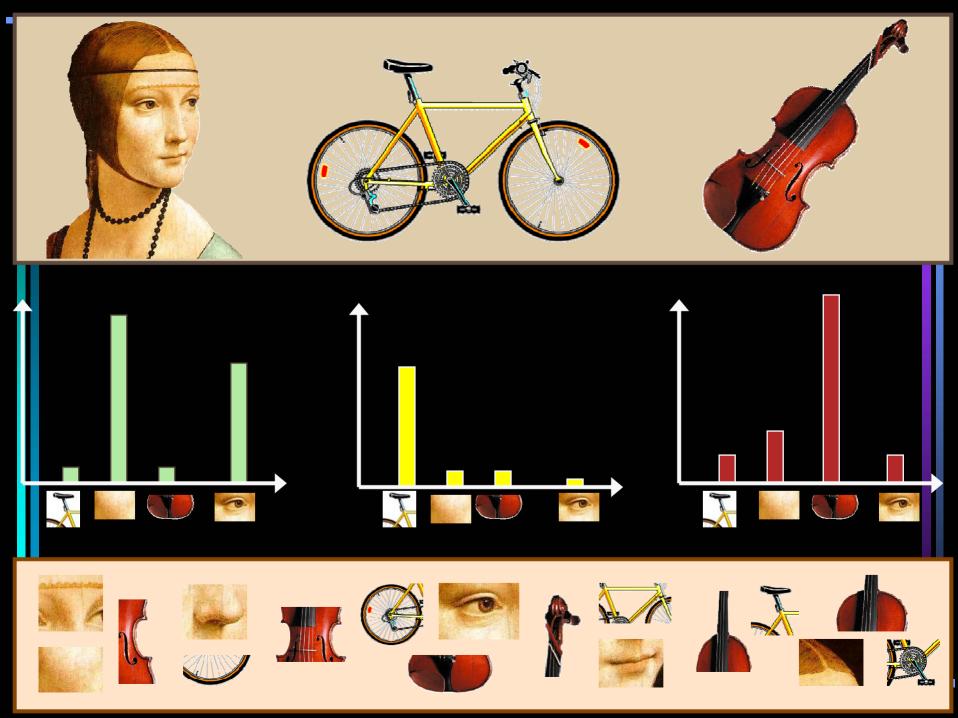
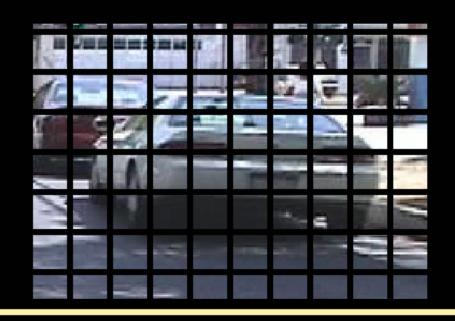

scale – find the best scale for a feature

 image description – create a descriptor for use in object recognition

Early Vision Motivation

pre-attentive stage: features pop out

 attentive stage: relationships between features and grouping


Detection of Salient Features for an Object Class

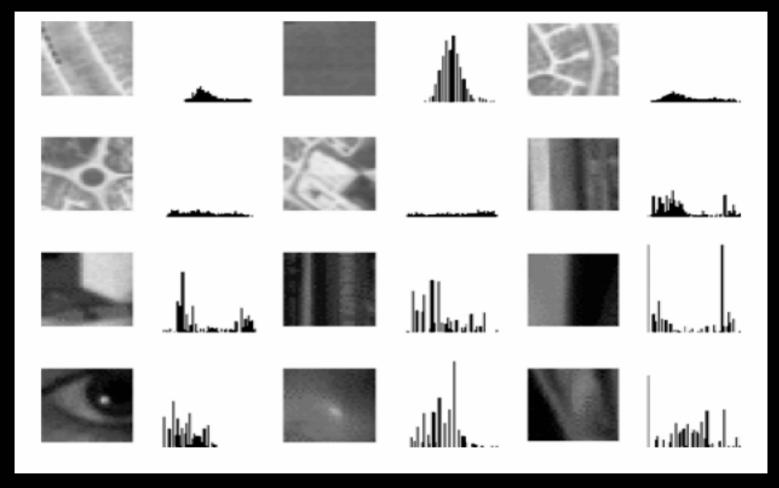
How do we do this?

- fixed size windows (simple approach)
- 2. Harris detector, Lowe detector, etc.
- 3. Kadir's approach

Kadir's Approach

 Scale is intimately related to the problem of determining saliency and extracting relevant descriptions.

 Saliency is related to the local image complexity, ie. Shannon entropy.


• entropy definition $H = -\sum_{\substack{i \text{ in set} \\ \text{of interest}}} P_i \log_2 P_i$

Specifically

- x is a point on the image
- R_x is its local neighborhood
- D is the descriptor of the neighborhood and has values {d₁, ... d_r}.
- $P_{D,Rx(di)}$ is the probability of descriptor D taking the value d_i in the local region R_x .

$$H_{D,R_X} = -\sum_i P_{D,R_X}(d_i) \log_2 P_{D,R_X}(d_i)$$

Local Histograms of Intensity

Neighborhoods with structure have flatter distributions which converts to higher entropy.

Problems Kadir wanted to solve

1. Scale should not be a global, preselected parameter

- 2. Highly textured regions can score high on entropy, but not be useful
- 3. The algorithm should not be sensitive to small changes in the image or noise.

Kadir's Methodology

- use a scale-space approach
- features will exist over multiple scales
 - Berghoml (1986) regarded feature (edges) that existed over multiple skills as best.
- Kadir took the opposite approach.
 - He considers these too self-similar.
 - Instead he looks for peaks in (weighted) entropy over the scales.

The Algorithm

- 1. For each pixel location x
 - a. For each scale s between smin and smax
 - Measure the local descriptor values within a window of scale s
 - ii. Estimate the local PDF (use a histogram)
 - b. Select scales (set S) for which the entropy is peaked (S may be empty)
 - c. Weight the entropy values in S by the sum of absolute difference of the PDFs of the local descriptor around S.

Finding salient points

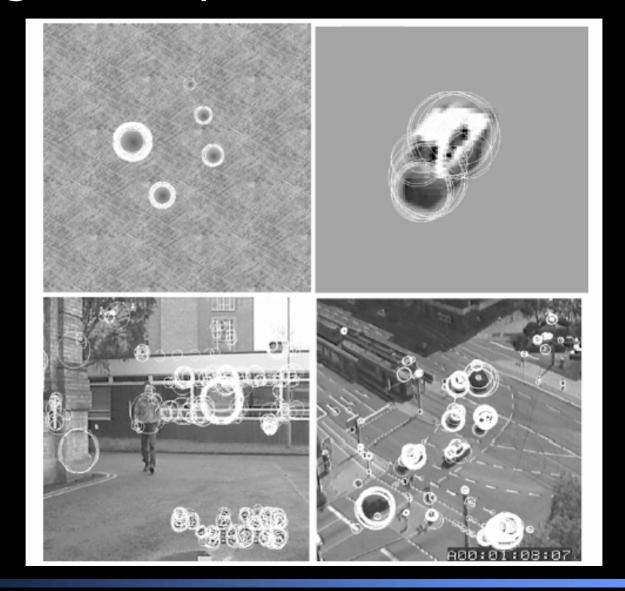
the math for saliency discretized

$$Y_{D}(\mathbf{s}, \mathbf{x}) = H_{D}(\mathbf{s}, \mathbf{x}) W_{D}(\mathbf{s}, \mathbf{x})$$

$$H_{D}(\mathbf{s}, \mathbf{x}) = -\sum_{d \in D} p_{\mathbf{s}, \mathbf{x}}(d) \log_{2} p_{\mathbf{s}, \mathbf{x}}(d)$$

$$W_{D}(\mathbf{s}, \mathbf{x}) = \frac{s^{2}}{2s - 1} \sum_{d \in D} |p_{\mathbf{s}, \mathbf{x}}(d) - p_{\mathbf{s} - 1, \mathbf{x}}(d)|$$

$$\mathbf{x} = \text{point}$$


$$\mathbf{s} = (\mathbf{s}, \mathbf{r}, \theta) = (\text{scale, eccentricity, orientation})$$

$$D = \text{low - level feature domain}$$

$$p_{\mathbf{s}, \mathbf{x}}(d) = \text{histogram of values of } D \text{ in region } \mathbf{s}, \mathbf{x}$$

- saliency
- entropy
- weightbased ondifferencebetweenscales

Picking salient points and their scales

Getting rid of texture

- One goal was to not select highly textured regions such as grass or bushes, which are not the type of objects the Oxford group wanted to recognize
- Such regions are highly salient with just entropy, because they contain a lot of gray tones in roughly equal proportions
- But they are similar at different scales and thus the weights make them go away

Salient Regions

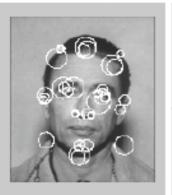
- Instead of just selecting the most salient points (based on weighted entropy), select salient regions (more robust).
- Regions are like volumes in scale space.
- Kadir used clustering to group selected points into regions.
- We found the clustering was a critical step.

Kadir's clustering (VERY ad hoc)

- Apply a global threshold on saliency.
- Choose the highest salient points (50% works well).
- Find the K nearest neighbors (K=8 preset)
- Check variance at center points with these neighbors.
- Accept if far enough away from existant clusters and variance small enough.
- Represent with mean scale and spatial location of the K points
- Repeat with next highest salient point

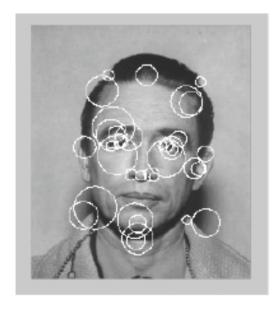
More examples

Robustness Claims


scale invariant (chooses its scale)

 rotation invariant (uses cirular regions and histograms)

somewhat illumination invariant (why?)

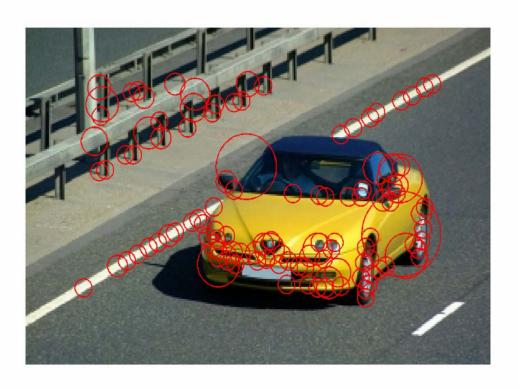

 not affine invariant (able to handle small changes in viewpoint)

More Examples

Temple

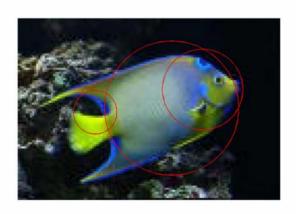
Capitol

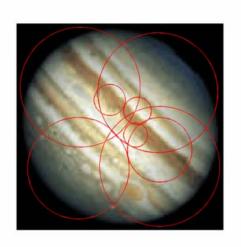
Houses and Boats

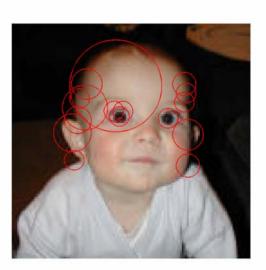

Houses and Boats

Sky Scraper

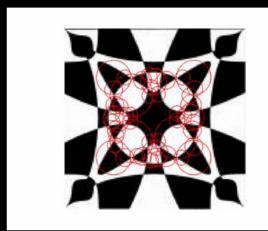
Car


Trucks


Fish



Other ...



Symmetry and More

Benefits

- General feature: not tied to any specific object
- Can be used to detect rather complex objects that are not all one color
- Location invariant, rotation invariant
- Selects relevant scale, so scale invariant
- What else is good?
- Anything bad?

References

- Kadir, Brady; Saliency, scale and image description; *IJCV* 45(2), 83-105, 2001
- Kadir, Brady; Scale saliency: a novel approach to salient feature and scale selection
- Treisman; Visual coding of features and objects: Some evidence from behavioral studies; Advances in the Modularity of Vision Selections, NAS Press, 1990
- Wolfe, Treisman, Horowitz; What shall we do with the preattentive processing stage: Use it or lose it? (poster); 3rd Annual Mtg Vis Sci Soc

References

- Dayan, Abbott; Theoretical Neuroscience; MIT Press, 2001
- Lamme; Separate neural definitions of visual consciousness and visual attention; Neural Networks 17, 861-872, 2004
- Di Lollo, Kawahara, Zuvic, Visser; The preattentive emperor has no clothes: A dynamic redressing; *J Experimental Psych*, General 130(3), 479-492
- Hochstein, Ahissar; View from the top: Hierarchies and reverse hierarchies in the visual system; Neuron 36, 791-804, 2002