Surface Modeling and Display from Range and Color Data

Kari	Pulli	UW
Michael	Cohen	MSR
Tom	Duchamp	UW
Hugues	Норре	MSR
John	McDonald	UW
Lìnda	Shapiro	UW
Werner	Stuetzle	UW

UW = University of Washington Seattle, WA USA MSR = Microsoft Research Redmond, WA USA

Introduction

Goal

- develop robust algorithms for constructing
 3D models from range & color data
- use those models to produce realistic renderings of the scanned objects

Surface Reconstuction

Step 1: Data acquisition

Obtain range data that covers the object. Filter, remove background.

Step 2: Registration

Register the range maps into a common coordinate system.

Step 3: Integration

Integrate the registered range data into a single surface representation.

Step 4: Optimization

Fit the surface more accurately to the data, simplify the representation.

Problem

Noisy registered data

Signed distance fn cubes

Hierarchical & directional & marching space carving

Carve space in cubes

Volume under consideration

Label cubes

- Project cube to image plane (hexagon)
- Test against data in the hexagon

Several views

Processing order:
FOR EACH cube
FOR EACH view

Rules:

any view thinks cube's out

every view thinks cube's in

=> it's in

else

=> it's at boundary

Hierarchical space carving

- Big cubes => fast, poor results
- Small cubes => slow, more accurate results
- Combination = octrees

- RULES: cube's out => done

 - cube's in => doneelse => recurse

Hierarchical space carving

- Big cubes => fast, poor results
- Small cubes => slow, more accurate results
- Combination = octrees

- RULES: cube's out => done

 - cube's in => doneelse => recurse

The rest of the chair

Optimizing the dog mesh

Registered points

Initial mesh

Optimized mesh

View dependent texturing

Our viewer

Overview of VBR

Choose 3 close views

Render meshes from the current viewpoint

For each pixel

- * read it from each view
- * remove occluded ones
- * calculate a weighted average
- * paint the pixel

Reconstruction of Blood Vessel Trees from Visible Human Data

Zhenrong Qian and Linda Shapiro
Computer Science & Engineering
Department
University of Washington

Introduction

Goal

 to reconstruct the blood vessels of the lungs from Visible Human Data

Computer vision

- semi-automation
- low-level image processing
- model construction

Visible Human Data: Slice through the Lung

Problems Encountered

Data source

- black spots that are not blood vessels
- variations of lighting

Characteristics of blood vessels

- similar color surrounds
- lack of knowledge
- close location
- shape variety
- continuous change not expected
- dense data

Finding the contours of a vessel being tracked (1)

Previous contour

EM Segmentation

Current slice

False color for the segmentation

Finding the contours of a vessel being tracked (2)

• The results after selecting regions of similar color to the tracked region

Segmentation result

Selected regions

Finding the contours of a vessel being tracked (3)

• The results after selecting the region that overlaps most with the previous contour

Selected regions

Region that overlaps most

Find the contours of a vessel being tracked (4)

• The results after morphology to close holes and remove noise

Selected region

After noise removal

Find the contours of a vessel being tracked (5)

• The contour is determined through a fastmarching level-set approach

Previous contour

Current contour

How branching is handled

One contour divides into two

• Two contours merge into one

The use of resampling when the axis is not vertical

- Track the axis through the center points of found contours
- **Fit** a spline curve
- **Resample** the data perpendicular to the spline curve

• Use the resampled contours for model creation

Detect the axis

Center points of found contours

Spline-fitted axis

Resample the data perpendicular to the spline curve

Overall Procedure for finding Vessel Trees

- The user **selects** a starting point
- The program automatically **tracks** the selected vessel and any branches it finds
- The program creates a **generalized cylinder** representation of the vessel tree
- The user may select more starting points

Some Initial Results

Artery tree from single seed

Vein tree from single seed

Typical Cross Section

Results: blood vessels in right lung from previous section

