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1 Introduction

[ Note: Change /date command above once final draft is reafy..

Algorithms for aligning images and stitching them into sé&ss photo-mosaics are among the
oldest and most widely used in computer vision. Frame-rai@ge alignment is used in every
camcorder that has an “image stabilization” feature. Imgtgehing algorithms create the high-
resolution photo-mosaics used to produce today’s digit@bsnand satellite photos. They also
come “out of the box” with every digital camera currently tgisold, and can be used to create
beautiful ultra wide-angle panoramas.

An early example of a widely-used image registration akhaoniis the patch-based transla-
tional alignment (optical flow) technique developed by Lsiead Kanade (1981). Variants of this
algorithm are used in almost all motion-compensated videopression schemes such as MPEG
and H.263 (Le Gall 1991). Similar parametric motion estioratlgorithms have found a wide
variety of applications, including video summarizatiore(@enet al. 1992, Teodosio and Bender
1993, Kumatret al. 1995, Irani and Anandan 1998), video stabilization (Haretesl. 1994), and
video compression (Irarmt al. 1995, Leeet al. 1997).

In the photogrammetry community, more manually intensieg¢hrads based on surveygebund
control pointsor manually registeretlie pointshave long been used to register aerial photos into
large-scale photo-mosaics (Slama 1980). One of the keynadgan this community was the de-
velopment ofbundle adjustmeralgorithms that could simultaneously solve for the locasiof
all of the camera positions, thus yielding globally coreistsolutions (Trigget al. 1999). One
of the recurring problems in creating photo-mosaics is timeiation of visible seams, for which
a variety of techniques have been developed over the yealgr@vh 1975, Milgram 1977, Peleg
1981, Davis 1998, Agarwalet al.2004)

In film photography, special cameras were developed at timediuthe century to take ultra
wide angle panoramas, often by exposing the film through #ceéslit as the camera rotated on
its axis (Meehan 1990). In the mid-1990s, image alignmeatirigjues started being applied to the
construction of wide-angle seamless panoramas from rnelgafal-held cameras (Mann and Picard
1994, Szeliski 1994, Chen 1995, Szeliski 1996). More rewgmnk in this area has addressed the
need to compute globally consistent alignments (Szeliski @hum 1997, Sawhney and Kumar
1999, Shum and Szeliski 2000), the removal of “ghosts” dupai@llax and object movement
(Davis 1998, Shum and Szeliski 2000, Uyttendalal. 2001, Agarwalaet al.2004), and dealing
with varying exposures (Mann and Picard 1994, Uyttendetedé 2001, Agarwalat al.2004). (A
collection of some of these papers can be found in (BenosméKang 2001).) These techniques
have spawned a large number of commercial stitching pred@ten 1995, Sawhney al. 1998),
for which reviews and comparison can be found on the Web.

While most of the above techniques work by directly minimgpixel-to-pixel dissimilarities,



a different class of algorithms works by extracting a spaeteffeaturesand then matching these
to each other (Zoghlanat al. 1997, Capel and Zisserman 1998, Cham and Cipolla 1998, B&dra
al. 1998, McLauchlan and Jaenicke 2002, Brown and Lowe 2003}uFe-based approaches have
the advantage of being more robust against scene moveme@irampotentially faster, if imple-
mented the right way. Their biggest advantage, howevengisbility to “recognize panoramas”,
i.e., to automatically discover the adjacency (overlaf@ti@nships among an unordered set of im-
ages, which makes them ideally suited for fully automate&dishg of panoramas taken by casual
users (Brown and Lowe 2003).

What, then, are the essential problems in image alignmenhisétching? For image align-
ment, we must first determine the appropriate mathematicalehrelating pixel coordinates in
one image to pixel coordinates in another. Section 2 revibese basienotion modelsNext, we
must somehow estimate the correct alignments relatingwampairs (or collections) of images.
Section 3 discusses haslirect pixel-to-pixel comparisons combined with gradient des¢and
other optimization techniques) can be used to estimate thesmmeters. Section 4 discusses how
distinctivefeaturescan be found in each image and then efficiently matched tallsapstablish
correspondences between pairs of images. When multiplgasnaxist in a panorama, techniques
must be developed to compute a globally consistent set ghmkents and to efficiently discover
which images overlap one another. These issues are disdasSection 5.

For image stitching, we must first choose a final compositurgase onto which to warp and
place all of the aligned images (Section 6). We also needveldp algorithms to seamlessly blend
overlapping images, even in the presence of parallax, lstsrton, scene motion, and exposure
differences (Section 6). In the last section of this suridiscuss additional applications of image
stitching and open research problems.

2 Motion models

Before we can register and align images, we need to estdhksmathematical relationships that
map pixel coordinates from one image to another. A varietgumhparametric motion models
are possible, from simple 2D transforms, to planar persgentodels, 3D camera rotations, lens
distortions, and the mapping to non-planar (e.g., cylraljisurfaces (Szeliski 1996).

To facilitate working with images at different resolutiomge adopt a variant of theormalized
device coordinatesised in computer graphics (Watt 1995, OpenGL ARB 1997). Fypaal
(rectangular) image or video frame, we let the pixel cocaths range from-1, 1] along the longer
axis, and—a, a] along the shorter, whereis the inverse of thaspect ratio' For an image with

YIn computer graphics, it is usual to have both axes range frem1], but this requires the use of two different
focal lengths for the vertical and horizontal dimensions] anakes it more awkward to handle mixed portrait and



width W and heightH, the equations mapping integer pixel coordinates (7, ) to normalized
device coordinates = (x,y) are

2t — W 2y — H
== 3 and y = Y 3 where S = max(WW, H). (1)
Note that if we work with images inpyramid we need to halve thg& value after each decimation
step rather than recomputing it framux (W, H), since th€ W, H) values may get rounded or trun-
cated in an unpredictable manner. For the rest of this pagense normalized device coordinates

when refering to pixel coordinates.

X

2.1 2D (planar) motions

Having defined our coordinate system, we can now describecbovdinates are transformed. The
simplest transformations occur in the 2D plane and aretilitesd in Figure 1.

Translation. 2D translations can be written &= x + t or
=1 t|x 2)

whereI is the € x 2) identity matrix andz = (z,y, 1) is the homogeneousr projective2D
coordinate.

Rotation + translation. This transformation is also known @® rigid body motionor the2D
Euclidean transformatiorfsince Euclidean distances are preserved). It can be witser’ =
Rx +tor

=R t|x (3)
where
cosf) —sind
R = 4
[ sinf cosf ] ()

is an orthonormal rotation matrix witRR” = I and|R| = 1.

Scaled rotation. Also known as thesimilarity transform this transform can be expressed as
«' = sRx + t wheres is an arbitrary scale factor. It can also be written as

z' =|sR t}zfc:{z _ab i]w (5)

where we no longer require that + b = 1. The similarity transform preserves angles between
lines.

landscape mode images.
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Figure 1: Basic set of 2D planar transformations

Affine. The affine transform is written as = A&, whereA is an arbitrary2 x 3 matrix, i.e.,
z — Qoo Gp1  Ap2 ~ (6)
ajp G11 A12

Parallel lines remain parallel under affine transformation

Projective. This transform, also known aspeerspective transforrar homographyoperates on
homogeneous coordinatésandz’,

& ~ Hi, (7)
where~ denotes equality up to scale aifl is an arbitrary3 x 3 matrix. Note thatH is itself
homogeneous, i.e., it is only defined up to a scale. The reguibmogeneous coordinaié must
be normalized in order to obtain an inhomogeneous rasyite.,

;  hooT + hory + hoo ;o + hay + hio
T = and = )
hao + ho1y + hao hoox + ho1y + hao

Perspective transformations preserve straight lines.

(8)

Hierarchy of 2D transformations The preceding set of transformations are illustrated ir Fig
ure 1 and summarized in Table 1. The easiest way to think cfeti®as a set of (potentially
restricted)3 x 3 matrices operating on 2D homogeneous coordinate vect@aglel and Zisser-
man (2004) contains a more detailed description of the fabyeof 2D planar transformations.

The above transformations form a nested sefrotips i.e., they are closed under composition
and have an inverse that is a member of the same group. Eagbl€s) group is a subset of the
more complex group below it.

2.2 3D transformations

A similar nested hierarchy exists for 3D coordinate transfations that can be denoted using
4 x 4 transformation matrices, with 3D equivalents to translatirigid body (Euclidean) and

4



| Name | Matrix | #D.O.F.| Preserves: | Icon |

translation I)t],, 2 | orientation+--- | [
rigid (Euclidean)| [ R [t ] . 3 |lengthst--- Q
similarity [sR|t] .| 4 |angles+. - S
affine (Al 6 | paralielismy--- | [/
projective | H }“ 8 straight lines G

Table 1: Hierarchy of 2D coordinate transformations. TRe< 3 matrices are extended with a thif@” 1]
row to form a full3 x 3 matrix for homogeneous coordinate transformations.

affine transformations, and homographies (sometimesatifineations) (Hartley and Zisserman
2004).

The process ofentral projectionmaps 3D coordinatgs = (X, Y, Z) to 2D coordinates: =
(x,y, 1) through apinholeat the camera origin onto a 2D projection plane a distghaeng the:
axis,

v=ig. y=fy ©
as shown in Figure 2. The relationship between the (ung}lexal lengthf and the field of view
0 is given by ; )
1 -1
f :tan§ or #=2tan ? (20)
To convert the focal lengtlf to its more commonly used 35mm equivalent, multiply the &bov
number by 17.5 (the half-width of a 35mm photo negative franf® convert it to pixel coordi-
nates, multiply it byS/2 (half-width for a landscape photo).
In the computer graphics literature, perspective prapects often written as a permutation

matrix that permutes the last two elements of homogenemesip = (z,y, z, 1),

D, (11)

oS O O
o O = O
_ o O O
S = O O

followed by a scaling and translation into screen arlauiffercoordinates.
In computer vision, it is traditional to drop the z-buffelwes, since these cannot be sensed in
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Figure 2: Central projection, showing the relationship between tbea®d 2D coordinatep andx, as well
as the relationship between the focal lengti” and the field of viewd. [ Note: Re-generate the figures
from Formation-figsl.vsd. Colin says | need a better figure.he]

an image and to write

f 000

z~|0 f00|p=][K|0]|p (12)

0 0 10
whereK = diag(f, f,1) is called thentrinsic calibrationmatrix? This matrix can be replaced by
a more general upper-triangular mathkthat accounts for non-square pixels, skew, and a variable
optic center location (Hartley and Zisserman 2004). Howewepractice, the simple focal length
scaling used above provides high-quality results wheahstiy images from regular cameras.

In this paper, | prefer to usedax 4 projection matrix P,

B K|o
x€Xr
0" |1

which maps the homogeneous 4-vegior (X, Y, Z, 1) to a special kind of homogemeosisreen
vectorz = (z,y,1,2). This allows me to denote the upper-l8ftx 3 portion of the projection
matrix P as K (making it compatible with the computer vision literatyrehile not dropping
altogether the inverse screen depth informatiqvhich is alo sometimes called thigsparity d
(Okutomi and Kanade 1993)). This latter quantity is neagstsareason about mappings between
images of a 3D scene, as described below.

What happens when we take two images of a 3D scene from diffeaenera positions and/or
orientations? A 3D poinp gets mapped to an image coordinatg in camera 0 through the
combination of a 3D rigid-body (Euclidean) motidsy,

Ty = { By o ] p = Eop, (14)

p = Pp, (13)

0" 1

2The last column ofK usually contains the optical cente,, c, ), but this can be set to zero if we use normalized
device coordinates.



and a perspective projectidf,
g ~ PoEp. (15)

Assuming that we know the z-buffer valug for a pixel in one image, we can map it back to the
3D coordinatep using
p~ E;' Pyl (16)

and then project it into another image yielding
(il ~ PlElp = PlElEo_lpo_liiO = MleO- (17)

Unfortunately, we do not usually have access to the depthdawates of pixels in a regular
photographic image. However, forpdanar scengwe can replace the last row &%, in (13) with
a generaplane equationn, - p + d, that maps points on the plane4p= 0 values. Then, if we
setz, = 0, we can ignore the last column 8, in (17) and also its last row, since we do not care
about the final z-buffer depth. The mapping equation (173 teduces to

& ~ H oo, (18)

where Hy, is a generaB x 3 homography matrix and, andz, are now 2D homogeneous co-
ordinates (i.e., 3-vectors) (Szeliski 1994, Szeliski )99®his justifies the use of the 8-parameter
homography as a general alignment model for mosaics of pkosmnes (Mann and Picard 1994,
Szeliski 1996

Rotational panoramas The more interesting case is when the camera undergoesqiat®n
(which is equivalent to assuming all points are very far fiitie camera). Setting = ¢, = 0, we
get the simplified x 3 homography

H,=K RR;'K;" (19)

whereK,, = diad( fx, fx, 1) is the simplified camera intrinsic matrix (Szeliski 1996hig can also
be re-written as

T Zo
Yy | ™~ Ry, Yo |» (20)
i fo

3For points off the reference plane, we get out-of-plpagallax motion, which is why this representation is often
called theplane plus parallaxepresentation (Sawhney 1994, Szeliski and Coughlan 198%aret al. 1994).
“Note that for a single pair of images, the fact that a 3D plargeing viewed by a set of rigid cameras does not

reduce the total number of degrees of freedom. However, farge collection of images taken of a planar surface
(e.g., a whiteboard) from a calibrated camera, we couldaethe number of degrees of freedom per image from 8 to
6 by assuming that the plane is at a canonical location (&4.1).
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which elucidates the simplicity of the mapping equationd arakes all of the motion parameters
explicit. Thus, instead of the general 8-parameter honmggraelating a pair of images, we get the
3-, 4-, or 5-parametéD rotationmotion models corresponding to the cases where the foggtHen
f is known, fixed, or variable (Szeliski and Shum 1997). Estingathe 3D rotation matrix (and
optionally, focal length) associated with each image ignstcally more stable than estimating a
full 8-d.o.f. homography, which makes this the method oficbdor large-scale consumer-level
image stitching algorithms (Szeliski and Shum 1997, Shuch@eeliski 2000, Brown and Lowe
2003).

Parameterizing 3D rotations. If we are going to represent panoramas using a combination of
rotations and focal lengths, what is the best way to reptekemotations themselves? The choices
include:

e the full 3 x 3 matrix R, which has to be re-orthonormalized after each update;

e Euler anglesa, 3, ), which are a bad idea because you cannot always move smdatimy
one rotation to another;

e the axis/angle (or exponential twist) representationciwhepresents the rotation by an axis
n and a rotation anglé, or the product of the two,

G =0n = (W, wy, w,), (22)
which has the minimial number of 3 parameters, but is stillumaque;

¢ and unit quaternions, which represent rotations with wviedtors,

q=(z,y,z,w) = (v,w) = (sin gﬂ,cosg), (22)

wheren andé are the rotation axis and angle.
The rotation matrix corresponding to a rotationtbground an axis is
R(n,0) = I +sinf[n]y + (1 —cosd)[n]%, (23)

which is known afRodriguez’s formulgAyache 1989), anél|, is the matrix form of the cross-
product operator,

0 —n, 7,
Alx=| n. 0 —n, |. (24)
—fy, f. 0



For small (infinitessimal) rotations, the rotation reduttes
R(&) =~ I +0n] =1+ [J]«. (25)

Using the trigonometric identitiesn 6 = 2sin & cos ¢ and(1 — cos #) = 2sin® ¢, Rodriguez’s
formula can be converted to

R(q) = I+sind[n],+ (1—cosh)[n)?
= I+ 2wy +2[v]2. (26)

This suggests a quick way to rotate a vector by a quaterniong ws series of cross products,
scalings, and additions. From this, we can derive the contynased formula forR(q) as a
function of (z, y, z, w),

1-2(y*+2%)  2(zy — 2w) 2(xz + yw)
R(q)=| 2ay+zw) 1-2a%+2%) 2yz—aw) |. (27)
2(zz — yw) 20yz + zw) 1 —2(2* + y?)

[ Note: Colin says this formula is inconsistent with formailee found on the Web; he promised
to send some links (follow up).The diagonal terms can be made more symmetrical by replacing
1 —2(y? + 2%) with (2 + w? — y* — 2?), etc.

Between the axis/angle represenation and quaternionsgraiy prefer unit quaternions, be-
cause they possess a nice algebra that makes it easy to takets (compositions), ratios (change
in rotation), and linear interpolations (Shoemake 198%). éxample, the product of two quater-
nionsq, = (vy, wp) andg, = (vy, wy) is given by

q; = 40491 = (’Uo X V1 + WoV1 + W1V, WoW1 — Vg * Ul), (28)

with the property thaR(q,) = R(q,)R(q,). (Note that quaternion multiplication r&t commu-
tative, just as 3D rotations and matrix multiplications ac¢.) Taking the inverse of a quaternion
is also easy: just flip the sign af or w (but not both!). However, when it comes time to update
rotation estimates, | use amcrementalform of the axis/angle representation (25), as described in
84.3.

2.3 Cylindrical and spherical coordinates

An alternative to using homographies or 3D motions to aligages is to first warp the images
into cylindrical coordinates and to then use a pure translational modelgo #dem (Chen 1995).
Unfortunately, this only works if the images are all takemhaa level camera or with a known tilt
angle.



(@) (b)

Figure 3: Projection from 3D to cylindrical and spherical coordinate
[ Note: Need something better, just a placeholder for ngw...

Assume for now that the camera is in its canonical positian, its rotation matrix is the
identity so that the optic axis is aligned with thexis and they axis is aligned vertically. The 3D
ray corresponding to afx, y) pixel is thereforgz, y, f).

We wish to project this image ontocglindrical surfaceof unit radius (Szeliski 1994). Points
on this surface are parameterized by an afigied a height, with the 3D cylindrical coordinates
corresponding t¢¢, 1) given by

(sinf, h,cos0) x (z,y, f), (29)

as shown in Figure 3a. From this correspondence, we can dertipuformula for thevarpedor
mappedcoordinates (Szeliski and Shum 1997),

¥ = s =stan"! ;, (30)
Y
y, — Sh = SW’ (31)

wheres is an arbitrary scaling factor (sometimes called h@ius of the cylinder) that can be set
to s = f to minimize the distortion (scaling) near the center of timage> The inverse of this
mapping equation is given by

/

r = ftanezftani, (32)

s
/ / /
y = h\/x2+f2:%f\/1+tan2x’/s:fygsecx;. (33)

Images can also be projected ontspdoerical surfac€Szeliski and Shum 1997), which is use-
ful if the final panorama includes a full sphere or hemisploérgews, instead of just a cylindrical

5The scale can also be set to a larger or smaller value for tabdanmpositing surface, depending on the desired
output panorama resolution—sg@
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(b)

Figure 4: An example of a cylindrical panorama: (a) two cylindricallsarped images related by a hori-
zontal translation; (b) part of a cylindrical panorama coogited from a sequence of images.
[ Note: Find the original images from the above paper... ]

strip. In this case, the sphere is parameterized by two aggle), with 3D spherical coordinates
given by
(sin 6 cos ¢, sin ¢, cos 0 cos @) x (x,y, f), (34)

as shown in Figure 3b. The correspondence between coadirahow given by (Szeliski and
Shum 1997)

¥ = s =stan"! ;, (35)
' - Y
Y = S(b:stan IW, (36)
while the inverse is given by
x/
r = ftanngtan;, (37)

/ / /
y = \/xz+f2tan¢:tan%f\/l—i-tangx’/s:ftany;sec%. (38)

Note that it may be simpler to generate a scdled, ~) direction from (34) followed by a per-
spective division by and a scaling by

Cylindrical image stitching algorithms are most commordgd when the camera is known to
be level and only rotating around its vertical axis (Chen3)9®@nder these conditions, images at
different rotations are related by a pure horizontal tratish® This makes it attractive as an initial
class project in an introductory computer vision coursa;ethe full complexity of the perspective
alignment algorithm§3.5 & §4.3) can be avoided. Figure 4 shows how two cylindricallypear
images from a leveled rotational panorama are related byre tpanslation (Szeliski and Shum
1997).

6Small vertical tilts can sometimes be compensated for witbrtical translation.
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Figure 5: An example of a spherical panorama constructed from 54 gnaghs.
[ Note: Find the original images from the above paper... ]

Professional panoramic photographers sometimes alsopee it head that makes it easy to
control the tilt and to stop at specifitetentsn the rotation angle. This not only ensures a uniform
coverage of the visual field with a desired amount of imagelape but also makes it possible
to stitch the images using cylindrical or spherical cooatis and pure translations. In this case,
pixel coordinategz, y, f) must first be rotated using the known tilt and panning angeferk
being projected into cylindrical or spherical coordinat€hen 1995). Having a roughly known
panning angle also makes it easier to compute the alignmeiece the rough relative positioning
of all the input images is known ahead of time, enabling a cedwsearch range for alignment.
Figure 5 shows a full 3D rotational panorama unwrapped dreéstrface of a sphere (Szeliski and
Shum 1997).

One final coordinate mapping worth mentioning is plodar mapping where the north pole lies
along the optic axis rather than the vertical axis,

(cos @ sin ¢, sinfsin ¢, cos ) = s (x,y, 2). (39)

In this case, the mapping equations become

/

X —
¥ = s¢pcosf =s=tan"?
r

, (40)

/

y = sgbsinﬁzsgtan_l
r

; (41)

SHEEENN

wherer = /22 + 12 is theradial distancein the (z,y) plane ands¢ plays a similar role in the
(«’,y") plane. This mapping provides an attractive visualizatimfiege for certain kinds of wide-
angle panoramas and is also a good model for the distortiluted byfisheyes lenseas discussed
below. Note how for small values ¢f, y), the mapping equations reducesitox sx/z, which
suggests that plays a role similar to the focal length Figure 6 shows the full 3D rotational
panorama shown in Figure 5 unwrapped onto a polar compgsitirface.

12



Figure 6: An example of a 3D rotational panorama mapped using a polgopira.
[ Note: Need to write the code to generate this... ]

(@ (b) ()

Figure 7: Examples of radial lens distortion: (a) barrel, (b) pincusi, and (c) fisheye.
[ Note: Run VideoMosaic to generate (a) and (b), grab any dngoar fisheyes for (c). ]

2.4 Lens distortions

When images are taken with wide-angle lenses, it is ofteessry to modelens distortions
such agadial distortion The radial distortion model says that coordinates in treeoled images
are displaced awaybérrel distortion) or towardsgincushiondistortion) the image center by an
amount proportional to their radial distance (Figure 7a-l§)e simplest radial distortion models
use low-order polynomials, e.g.,

P = $(1+/€1T2+/€27"4)

Y = y(l+kr? + wort), (42)
wherer? = 2% +y? andk, andk, are called theadial distortion parameter§Brown 1971, Slama
1980)/ More complex distortion models also inclutingential (decentering) distortior{fSlama
1980), but these are usually not necessary for consumelrdgtching.

A variety of techniques can be used to estimate the radi&brtiisn parameters for a given
lens. One of the simplest and most useful is to take an imageoéne with a lot of straight lines,
especially lines aligned with and near the edges of the imB&lge radial distortion parameters can
then be adjusted until all of the lines in the image are diaighich is commonly called thaelumb
line methodBrown 1971, Kang 2001, EI-Melegy and Farag 2003).

Another approach is to use several overlapping images atwhtbine the estimation of the ra-
dial distortion parameters together with the image aligninpeocess. Sawhney and Kumar (1999)
use a hierarchy of motion models (translation, affine, mtoje) in a coarse-to-fine strategy cou-
pled with a quadratic radial distortion correction term. eytuse direct (intensity-based) mini-
mization to compute the alignment. Stein (1997) uses alfediased approach combined with
a general 3D motion model (and quadratic radial distortiamyich requires more matches than a
parallax-free rotational panorama but is potentially ngegeral.

Fisheye lenses require a different model than traditioobimomial models of radial distortion
(Figure 7c). Instead, fisheye lenses behave, to a first appation, asequi-distanceprojectors

’Sometimes the relationship betweeandz’ is expressed the other way around, i.e., using primed (fooal)di-
nates on the right-hand side.
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of angles away from the optic axis (Xiong and Turkowski 199vhich is the same as thpolar
projectiondescribed by equations (39-41). Xiong and Turkowski (19#8cribe how this model
can be extended with the addition of an extra quadratic cbor in ¢, and how the unknown
parameters (center of projection, scaling fagtogtc.) can be estimated from a set of overlapping
fisheye images using a direct (intensity-based) non-limeaimization algorithm.

3 Direct (pixel-based) alignment

Once we have chosen a suitable motion model to describeigmradnt between a pair of images,
we need to devise some method to estimate its parametersagpneach is to shift or warp the
images relative to each other and to look at how much the piagitee. Approaches that use
pixel-to-pixel matching are often calletirect methodsas opposed to thieature-based methods
described in the next section.

To use a direct method, a suitaldeor metric must first be chosen to compare the images.
Once this has been established, a suitablrchtechnique must be devised. The simplest tech-
nigue is to exhaustively try all possible alignments, ite.do afull search In practice, this may
be too slow, sdierarchical coarse-to-fine techniques based on image pyramids havedeeeh
oped. Alternatively, Fourier transforms can be used todjpgethe computation. To get sub-pixel
precision in the alignmenincrementaimethods based on a Taylor series expansion of the image
function are often used. These can also be appliggatametric motion modelsEach of these
techniques is described in more detail below.

3.1 Error metrics

The simplest way to establish an alignment between two isi&gg shift one image relative to
the other. Given @aemplateimage/,(x) sampled at discrete pixel locatiofs; = (z;,v;)}, we
wish to find where it is located in imagl(x). A least-squares solution to this problem is to find
the minimum of thesum of squared differenc€SSD) function

ESSD('U') = Z[]l(:cl + 'I.L) — ]0(33@)]2 = Ze?, (43)

(2

whereu = (u,v) is thedisplacemenande; = I, (x; + u) — Iy(x;) is called theresidual error
(or thedisplaced frame differenda the video coding literaturé) (We ignore for the moment the
possibility that parts of, may lie outside the boundaries Gfor be otherwise not visible.)

8The usual justification for using least squares is that hésdptimal estimate with respect to Gaussian noise. See
the discussion below on robust alternatives.
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In general, the displacemeantcan be fractional, so a suitable interpolation function nings
applied to imagd; (x). In practice, a bilinear interpolant is often used, but lbic interpolation
may yield slightly better results. Color images can be pseed by summing differences across all
three color channels, although it is also possible to fiestgform the images into a different color
space or to only use the luminance (which is often done inovetecoders).

Robust error metrics We can make the above error metric more robust to outliergphacing
the squared error terms with a robust functign;) (Huber 1981, Hampedt al. 1986, Black and
Anandan 1996, Stewart 1999) to obtain

ESRD ZP [1 fBZ +u - [O wz Zp ez (44)

The robust nornp(e) is a function that grows less quickly than the quadratic figrassociated
with least squares. One such function, sometimes used ilomestimation for video coding
because of its speed, is them of absolute differencéSAD) metric, i.e.,

ESAD Z|Il :Bz+u I()(Q’JZ)| :Z|€Z‘ (45)

However, since this function is not differentiable at thegior, it is not well suited to gradient-
descent approaches such as the ones preseriddtin

Instead, a smoothly varying function that is quadratic foa$l values but grows more slowly
away from the origin is often used. Black and Rangarajan §l8#cuss a variety of such func-
tions, including the&Geman-McClurdunction,

33'2

S 46
T o (46)

pam () =
whereaq is a constant that can be thought of asoarlier threshold An appropriate value for the
threshold can itself the derived using robust statistiaga@t 1981, Hampaedt al. 1986, Rousseeuw
and Leroy 1987), e.g., by computing theedian of absolute differencel/ AD = med|e;|, and
multiplying by 1.4 to obtain a robust estimate of the stadd#eviation of the non-outlier noise
process.

Spatially varying weights. The error metrics above ignore that fact that for a givennaignt,
some of the pixels being compared may lie outside the ofiginage boundaries. Furthermore,
we may want to partially or completely downweight the cdmitions of certain pixels. For ex-
ample, we may want to selectively “erase” some parts of ag@ieom consideration, e.g., when
stitching a mosaic where unwanted foreground objects haega but out. For applications such as
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background stabilization, we may want to downweight thediggart of the image, which often
contains independently moving objects being tracked by #meera.

All of these tasks can be accomplished by associating aadigatiarying per-pixel weight
value with each of the two images being matched. The errorierteen become the weighted (or
windowed) SSD function,

Evwssp(w) = 3 wo()wy (@ + w)[l1(a; +u) — To(@)]", (47)

where the weighting functions, andw; are zero outside the valid ranges of the images.

If a large range of potential motions is allowed, the abovérime&an have a bias towards
smaller overlap solutions. To counteract this bias, thedawved SSD score can be divided by the
overlap area

to compute ger-pixel(or mean) squared pixel error. The square root of this gtyaisttheroot

mean squarethtensity error
RMS = \/Ewssp/A (49)

often seen reported in comparative studies.

Bias and gain (exposure differences). Often, the two images being aligned were not taken with
the same exposure. A simple model of linear (affine) intgnatiation between the two images is
thebias and gaimmodel,

L(x4+u)= (14 a)ly(x)+ 5, (50)

where(3 is thebiasand« is thegain (Lucas and Kanade 1981, Gennert 1988, Fuh and Maragos
1991, Bakeet al. 2003b). The least squares formulation then becomes

Epc(u) =) [L(z +u) — (L+ a)o(z;) — 8] =D [alo(x;) + 8 — e (51)

K3 3

Rather than taking a simple squared difference betweeegmonding patches, it becomes neces-
sary to perform dinear regressionwhich is somewhat more costly. Note that for color images,
it may be necessary to estimate a different bias and gairafdr eolor channel to compensate for
the automaticolor correctionperformed by some digital cameras.

A more general (spatially-varying non-parametric) modehtensity variation, which is com-
puted as part of the registration process, is presentedarafd Tang 2003). This can be useful
for dealing with local variations such as thgnettingcaused by wide-angle lenses. It is also
possible to pre-process the images before comparing thkies, e.g., by using band-pass filtered
images (Burt and Adelson 1983, Bergeinal. 1992) or using other local transformations such as
histograms or rank transforms (Cekal. 1995, Zabih and Woodfill 1994).
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Correlation. An alternative to taking intensity differences is to penfiarorrelation i.e., to max-
imize theproduct(or cross-correlatiof of the two aligned images,

Ecc(u) = Z Io(@:) I (; + w). (52)

At first glance, this may appear to make bias and gain modalmngcessary, since the images will
prefer to line up regardless of their relative scales ansketdf However, this is actually not true. If
a very bright patch exists ifi (), the maximum product may actually lie in that area.
For this reasomormalized cross-correlatioils more commonly used,
Sillo(®:) — Io] [l (@i + ) — 1]

Encel(u) = —= : 53
) = @) —Toflh(@ £ w) T 3

where
1

]0 = N;IO(Q:Z) and (54)
1

are themean imagesf the corresponding patches aids the number of pixels in the patch. The
normalized cross-correlation score is always guarantebd tn the rangé-1, 1], which makes it
easier to handle in some higher-level applications (sualeagling which patches truly match).
Note, however, that the NCC score is undefined if either ofwlmepatches has zero variance (and
in fact, its performance degrades for noisy low-contragiomes).

3.2 Hierarchical motion estimation

Now that we have defined an alignment cost function to opemwow do we find its minimum?
The simplest solution is to dofall searchover some range of shifts, using either integer or sub-
pixel steps. This is often the approach usedftock matchingin motion compensated video
compressiopwhere a range of possible motions (say6 pixels) is explored.

To accelerate this search procdssyarchical motion estimatiois often used, where an image
pyramid is first constructed, and a search over a smaller ruofloliscrete pixels (corresponding to
the same range of motion) is first performed at coarser l¢@iam 1984, Anandan 1989, Bergen
et al. 1992). The motion estimate from one level of the pyramid ¢entbe used to initialize a

%In stereo matching, an explicit search over all possiblpatisies (i.e., @lane sweepis almost always performed,
since the number of search hypotheses is much smaller doe idxnature of the potential displacements (Scharstein
and Szeliski 2002).
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smallerlocal search at the next finer level. While this is not guarantegutdduce the same result
as full search, it usually works almost as well and is muctefas
More formally, let
1) (@) — IV (2a;) (56)

be thedecimatedimage at level obtained by subsamplingl¢wnsamplinya smoothed (pre-
filtered) version of the image at leviel 1. Atthe coarsest level, we search for the best displacement
uY that minimizes the difference between imag’éé and I{”. This is usually done using a full
search over some range of displacementsc 2-/[—S, S]? (whereS is the desiredearch range
at the finest (original) resolution level), optionally f@ied by the incremental refinement step
described ir43.4.

Once a suitable motion vector has been estimated, it is og@edicta likely displacement

a1 9,0 (57)

for the next finer levet’® The search over displacements is then repeated at the firedroleer

a much narrower range of displacements, ady" + 1, again optionally combined with an in-
cremental refinement step (Anandan 1989). A nice descnigtidhe whole process, extended to
parametric motion estimatio§3.5), can be found in (Bergest al. 1992).

3.3 Fourier-based alignment

When the search range corresponds to a significant fractitiredarger image (as is the case in
image stitching), the hierarchical approach may not woésk tell, since it is often not possible
to coarsen the representation too much before significatirfes get blurred away. In this case, a
Fourier-based approach may be preferable.

Fourier-based alignment relies on the fact that the Fotna@sform of a shifted signal has the
same magnitude as the original signal but linearly varyingse, i.e.,

FiL(@+w)} = F{Li(x)} e = 1, (f)e 2w ] (58)

where f is the vector-valued frequency of the Fourier transformaeduse calligraphic notation

Z,(f) = F{IL(x)} to denote the Fourier transform of a signal (Oppenhetial. 1999, p. 57).
Another useful property of Fourier transforms is that cdation in the spatial domain corre-

sponds to multiplication in the Fourier domain (Oppenheinal. 1999, p. 58). Thus, the Fourier

10This doubling of displacements is only necessary if disgiaents are defined in integgixel coordinates, which
is the usual case in the literature, e.g., (Bergeal. 1992). Ifnormalized device coordinaté$?) are used instead, the
displacements (and search ranges) need not change fronoléseel, although the step sizes will need to be adjusted
(to keep search steps of roughly one pixel).
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transform of the cross-correlation functiéihc can be written as

F (Beclw} = F{ X h(eha 0} = F (e} =TT, (69)

where

hw) = fu)sg(w) = Y- f@)g(w: +u) (60)

is the correlation function, i.e., the convolution of one signal with the reseeiof the other, and
Z7(f) is thecomplex conjugatef Z; ( f). (This is because convolution is defined as the summation
of one signal with the reverse of the other (Oppenheiral. 1999).)

Thus, to efficiently evaluat&- over the range of all possible valueswfwe take the Fourier
transforms of both imagek (x) and I; (x), multiply both transforms together (after conjugating
the second one), and take the inverse transform of the r@hdtFast Fourier Transform algorithm
can compute the transform of & x A image in QN M log N M) operations (Oppenheist al.
1999). This can be significantly faster than the\®M?) operations required to do a full search
when the full range of image overlaps is considered.

While Fourier-based convolution is often used to accedeita computation of image correla-
tions, it can also be used to accelerate the sum of squaffedetites function (and its variants) as
well. Consider the SSD formula given in (43). Its Fouriens®rm can be written as

)

F (oW} = F { Clhle: + ) - b} = 500) Sli(e) + 1e)]) - BT
Z (61)
Thus, the SSD function can be computed by taking twice theetadron function and subtracting
it from the sum of the energies in the two images.

Windowed correlation. Unfortunately, the Fourier convolution theorem only applivhen the
summation overe; is performed ovearll the pixels in both images, using a circular shift of the
image when accessing pixels outside the original bounslali¢hile this is acceptable for small
shifts and comparably sized images, it makes no sense waémé#ges overlap by a small amount
or one image is a small subset of the other.

In that case, the cross-correlation function should beagal with awindowed(weighted)
cross-correlation function,

Ewcc(u) = Z wo(x;)Io(x;) wi(x; +w)li(x; + u), (62)

2

= [wo(@)lo(@)[¥[w: ()1 (2)] (63)

where the weighting functions, andw, are zero outside the valid ranges of the images, and both
images are padded so that circular shifts return 0 valuessdmuthe original image boundaries.
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An even more interesting case is the computation oftteghtedSSD function introduced in
(47),

Ewssp(w) = Y wo(@)wy (@ + w)[li(z; + u) — o))" (64)
= wo(@)*wi ()} ()] + [wo(@) [5 (z)[Fw: () — 2[wo () Io(z)[F[wi (z) 1 (2)].

The Fourier transform of the resulting expression is thoreef

F {Bwssp(w)} = Wo(£)S; (f) + So(H)Ws (£) — 2Zo(F)LT(f), (65)
where
Wo = Flwo(z)}, Wi = Flun(z)},
I() = ]—"{wo(m)lo(m)}, Il = ]—"{wl(m)h(w)}, (66)
So = F{wo(x)I(x)}, and S = Flw(zx)}(x)}

are the Fourier transforms of the weighting functions amditbightedoriginal and squared image
signals. Thus, for the cost of a few additional image mukgphnd Fourier transforms, the correct
windowed SSD function can be computed. (To my knowledgeyeheot seen this formulation
written down before, but | have been teaching it to studestsdveral years now.)

The same kind of derivation can be applied to the bias-ganmected sum of squared difference
function Egg. Again, Fourier transforms can be used to efficiently coragalt the correlations
needed to perform the linear regression in the bias and gasmpeters in order to estimate the
exposure-compensated difference for each potential shift

Phase correlation. A variant of regular correlation (59) that is sometimes ulsgdnotion esti-
mation isphase correlatior{fKuglin and Hines 1975, Brown 1992). Here, the spectrum eftio
signals being matched hitenedby dividing each per-frequency product in (59) by the magni-
tudes of the Fourier transforms,

- D(HTI(S)
FABro(u)} = e T AT

before taking the final inverse Fourier transform. In theecat noiseless signals with perfect
(cyclic) shift, we have; (x + v) = I(x), and hence from (58) we obtain

(67)

Fih(x+u)} = L(f)e S =1,(f) and
F{Bpo(u)} = el (68)

The output of phase correlation (under ideal conditionshésefore a single spike (impulse) lo-
cated at the correct value af which (in principle) makes it easier to find the correctrestie.
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Figure 8: Animage (a) and its polar (b) and log-polar (c) transforms.
[ Note: Need to write the code to generate these... |

Phase correlation has a reputation in some quarters of botpeng regular correlation, but
this behavior depends on the characteristics of the sigmalsnoise. If the original images are
contaminated by noise in a narrow frequency band (e.g.fteguency noise or peaked frequency
“hum?”), the whitening process effectively de-emphasizesnoise in these regions. However, if
the original signals have very low signal-to-noise ratie@ne frequencies (say, two blurry or low-
textured images with lots of high-frequency noise), thetaming process can actually decrease
performance. To my knowledge, no systematic comparisohefwo approaches (together with
other Fourier-based techniques such as windowed and&ghia corrected differencing) has been
performed, so this is an interesting area for further exgtion.

Rotations and scale. While Fourier-based alignment is mostly used to estimatesiational
shifts between images, it can, under certain limited comult also be used to estimate in-plane
rotations and scales. Consider two images that are repatedy by rotation, i.e.,

L(Rx) = Io(). (69)
If we re-sample the images inpmlar coordinategFigure 8b),
Io(r,0) = Iy(rcosf,rsin@) and I,(r,0) = I(rcosf,rsiné), (70)

we obtain
Li(r,0 + 0) = Io(r,0). (71)

The desired rotation can then be estimated using an FFFlss&d technique[ Note: Show an
image and its polar transform. ]
If the two images are also related by a scale,

I,(¢* Ra) = Io(x), (72)
we can re-sample int@g-polar coordinategFigure 8c),
Io(s,0) = Iy(e®* cos B, e*sinf) and 1I,(s,0) = I,(e* cos 0, e* sin h), (73)

to obtain

~ ~

Ii(s+ 5,0+ 0) = Iy(s,0). (74)
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In this case, care must be taken to choose a suitable rangeaties that reasonably samples the
original image. [ Note: Show an image and its log-polar transform, along vatlotated/scaled
image and its transforms. ]

For images that are also translated by a small amount,

(e Rx + t) = Iy(x), (75)

De Castro and Morandi (1987) proposed an ingenious solth@inuses several steps to estimate
the unknown parameters. First, both images are convertduetéourier domain, and only the
magnitudes of the transformed images are retained. Inipt&éydhe Fourier magnitude images
are insensitive to translations in the image plane (althahg usual caveats about border effects
apply). Next, the two magnitude images are aligned in rota#ind scale using the polar or log-
polar representations. Once rotation and scale are estimane of the images can be de-rotated
and scaled, and a regular translational algorithm can bkeatp estimate the translational shift.

Unfortunately, this trick only applies when the images hiarge overlap (small translational
motion). For more general motion of patches or images, thenpetric motion estimator described
in §3.5 or the feature-based approaches describgd imeed to be used.

3.4 Incremental refinement

The techniques described up till now can estimate traoslatialignment to the nearest pixel (or
potentially fractional pixel if smaller search steps ared)s In general, image stabilization and
stitching applications require much higher accuraciedtaia acceptable results.

To obtain bettessub-pixelestimates, we can use one of several techniques (Tian andsHuh
1986). One possibility is to evaluate several discreteget or fractional) values df:, v) around
the best value found so far anditdgerpolatethe matching score to find an analytic minimum.

A more commonly used approach, first proposed by Lucas andd&f1981), is to dgradient
descenbn the SSD energy function (43), using a Taylor Series expamd the image function,

Bk ssp(u+Au) = Y [L(xi +u+ Au) — Ip(z;)]?

(2

~ Y [N+ ) + T (@i + u)Au — Lo(@))? (76)
where
oI, 01,
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is theimage gradienatx; + u.'!
The above least squares problem can be minimizing by sothimgssociatedormal equations
(Golub and Van Loan 1996),

AAu=0> (79)
where
A=Y T (@i + uw)d (@ +u) (80)
and
b=—> eJi(z; +u) (81)

are called thédessiarandgradient-weighted residual vectaespectively. These matrices are also

often written as
2
A= | 2 lefy and b= | =1t : (82)
> ILI, I > 1,0

where the subscripts i, and/, denote spatial derivatives, afids called theemporal derivative
which makes sense if we are computing instantaneous welodt video sequence.

The gradients required fof, (x; + u) can be evaluated at the same time as the image warps
required to estimaté (x; + ), and in fact are often computed as a side-product of imagegdat
lation. If efficiency is a concern, these gradients can b&aoepgl by the gradients in themplate
image,

Ji(zi +u) = Jo(x), (83)

since near the correct alignment, the template and digplerget images should look similar.
This has the advantage of allowing the pre-computatione@Héssian and Jacobian images, which
can result in significant computational savings (Hager aelthiBneur 1998, Baker and Matthews
2004).

The effectiveness of the above incremental update rulesreln the quality of the Taylor series
approximation. When far away from the true displacemeny (s pixels), several iterations
may be needed. (It is possible, however, to estimate a valudf using a least-squares fit to
a series of larger displacements in order to increase thgerahconvergence (Jurie and Dhome
2002).) When started in the vicinity of the correct solutionly a few iterations usually suffice.
A commonly used stopping criterion is to monitor the magihétwf the displacement correction
||| and to stop when it drops below a certain threshold (ga$! of a pixel). For larger motions,
itis usual to combine the incremental update rule with agangdrical coarse-to-fine search strategy,
as described i13.2.

\We follow the convention, commonly used in robotics and iaK& and Matthews 2004), that derivatives with
respect to (column) vectors result in row vectors, so thaeféransposes are needed in the formulas.

23



Conditioning and aperture problems. Sometimes, the inversion of the linear system (79) can
be poorly conditioned because of lack of two-dimensiongiuiee in the patch being aligned. A
commonly occurring example of this is tlaperture problemfirst identified in some of the early
papers on optic flow (Horn and Schunck 1981) and then studiee mxtensively by Anandan
(1989). Consider an image patch that consists of a slantgel eaving to the right. Only the
normal component of the velocity (displacement) can be reliabbovered in this case. This
manifests itself in (79) as enk-deficientmatrix A, i.e., one whose smaller eigenvalue is very
close to zerd?

When equation (79) is solved, the component of the displac¢éaiong the edge is very poorly
conditioned and can result in wild guesses under small m@sirbations. One way to mitigate
this problem is to add prior (soft constraint) on the expected range of motions (Simidneeal.
1991, Bakeet al.2004). This can be accomplished by adding a small value tdidgonal ofA,
which essentially biases the solution towards smalarvalues that still (mostly) minimize the
squared error.

However, the pure Gaussian model assumed when using a iimpty quadratic prior, as in
(Simoncelliet al. 1991), does not always hold in practice, e.g., because adiali along strong
edges (Triggs 2004). For this reason, it may be prudent tsadw small fraction (say 5%) of the
larger eigenvalue to the smaller one before doing the meaversion.

Uncertainty modeling The reliability of a particular patch-based motion estieneén be cap-
tured more formally with amincertainty model The simplest such model iscavariance matrix
which captures the expected variance in the motion estimaiépossible directions. Under small
amounts of additive Gaussian noise, it can be shown thaoWegi@ance matrix.q, is proportional
to the inverse of the Hessia,

Yu =02A"", (84)

whereo? is the variance of the additive Gaussian noise (Anandan,189B@thieset al. 1989,
Szeliski 1989). For larger amounts of noise, the lineaioraperformed by the Lucas-Kanade
algorithmin (77) is only approximate, so the above quati@yomes th€ramer-Rao lower bound
on the true covariance. Thus, the minimum and maximum eajaes of the Hessiad can now
be interpreted as the (scaled) inverse variances in thededasin and most-certain directions of
motion.

12The matrix A is by construction always guaranteed to be symmetric pessemi-definite, i.e., it has real non-
negative eigenvalues.
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Bias and gain, weighting, and robust error metrics. The Lucas-Kanade update rule can also
be applied to the bias-gain equation (51) to obtain
Erx-pe(u+ Au) =Y [Ji(z; + u)Au + ¢; — aly(x;) — ] (85)
(Lucas and Kanade 1981, Gennert 1988, Fuh and Maragos 18Rérd® al.2003b). The resulting
4 x4 system of equations in can be solved to simultaneously astithe translational displacement
updateAw and the bias and gain parametgrando.t®
A similar formulation can be derived for images (templatdst have dinear appearance
variation,
Li(x +u) ~ Iz +Z>\B (86)

where theB;(x) are thebasis imagesind the); are the unknown coefficients (Hager and Bel-
humeur 1998, Bakeet al. 2003a, Bakeet al. 2003b). Potential linear appearance variations in-
clude illumination changes (Hager and Belhumeur 1998) amallsion-rigid deformations (Black
and Jepson 1998).

A weighted (windowed) version of the Lucas-Kanade algamith also possible,

Erx-wssp(u + Au) Z wo(z)wy (x; + w)[J1 (2 + w)Au + e;]%. (87)

Note that here, in deriving the Lucas-Kanade update fromotiginal weighted SSD function
(47), we have neglected taking the derivativeefx; + ) weighting function with respect ta,
which is usually acceptable in practice, especially if treeghiting function is a binary mask with
relatively few transitions.

Bakeret al. (2003a) only use they(x) term, which is reasonable if the two images have the
same extent and no (independent) cutouts in the overlaprreghey also discuss the idea of mak-
ing the weighting proportional t¥ I (x), which helps for very noisy images, where the gradient
itself is noisy. Similar observation, formulated in ternfeatal least squaregHuffel and Vande-
walle 1991), have been made by other researchers studyiiegflopy (motion) estimation (Weber
and Malik 1995). Lastly, Bakeet al. (2003a) show how evaluating (87) at just tmest reliable
(highest gradient) pixels does not significantly reducéqguarance for large enough images, even
if only 5%-10% of the pixels are used. (This idea was oridginptoposed by Dellaert and Collins
(1999), who used a more sophisticated selection critgrion.

The Lucas-Kanade incremental refinement step can also biedpp the robust error metric
introduced ing3.1,

Erx_srp(u + Au) = Z p(J1(x; + u)Au + ¢;). (88)

13n practice, it may be possible to decouple the bias-gaimasiibn update parameters, i.e., to solve two indepen-
dent2 x 2 systems, which is a little faster.
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We can take the derivative of this function w.ftand set it to 0O,

u

Zw@i)% =2 _v(e)Ji(w +u) =0, (89)

whereV(e) = p/(e) is the derivative op. If we introduce a weight functiow(e) = W(e)/e, we
can write this as

S w(e)d | (x + w)[Ji(xi + u)Au +¢;] = 0. (90)
This results in thdteratively Re-weighted Least Squaadgorithm, which alternates between com-
puting the weight functionsv(e;) and solving the above weighted least squares problem (Hu-
ber 1981, Stewart 1999). Alternative incremental robuastiesquares algorithms can be found
in (Sawhney and Ayer 1996, Black and Anandan 1996, Black aadgRrajan 1996, Bakeat
al. 2003a) and textbooks and tutorials on robust statistich@dui 981, Hampeeét al. 1986,
Rousseeuw and Leroy 1987, Stewart 1999).

3.5 Parametric motion

Many image alignment tasks, for example image stitchingp Wandheld cameras, require the use
of more sophisticated motion models, as describéj2inSince these models typically have more
parameters than pure translation, a full search over thsildesrange of values is impractical.
Instead, the incremental Lucas-Kanade algorithm can bergkred to parametric motion models
and used in conjunction with a hierarchical search algori(bucas and Kanade 1981, Rehg and
Witkin 1991, Fuh and Maragos 1991, Bergetral. 1992, Baker and Matthews 2004).

For parametric motion, instead of using a single constanstation vectot,, we use a spatially
varyingmotion fieldor correspondence map’(x; p), parameterized by a low-dimensional vector
p, wherex’ can be any of the motion models presentegin The parametric incremental motion
update rule now becomes

Eix-pm(p+ Ap) = Z[h(a)'(wi; p+ Ap)) — [O(wi)]Q (91)
~ SI(al) + Ti(@)dp - Li@)f ©2)
= > [Ji(z)Ap + el (93)

2

where the Jacobian is now a1 9
/ 1 NS

Jl(wz) ap \% 1<wz> ap (wl)7 (9 )

i.e., the product of the image gradieWt/; with the Jacobian of correspondence fieltl, =

ox' /Op.
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Transform ‘ Matrix Parameters JacobianJ 4/
[1 0 tx] [1 o]
translation U (tast,) 0 1
[ Co =50 la ] [ 1 0 —spz—cpy ]
Euclidean So Co Uy (s, t,.0) 0 1 coz— sgy
l+a —b tm] llox—y]
similarity b l1+4a t, (ta,ty, a,b) 01y =
14 ag  ag  t {1 0z y 0 0]
affine apg  l+an (t2, ty, o0, Ao1, 10, A1) 0100 2y
L+ho  hot  ho
o L+ hiy hio
projective hao haoy 1 (hoo, - - -, hat) (see text)

Table 2; Jacobians of the 2D coordinate transformations.

Table 2 shows the motion Jacobiaiig: for the 2D planar transformations introducedsih
Note how | have re-parameterized the motion matrices scliegtare always the identity at the
origin p = 0. This will become useful below, when we talk about the conitpm®al and inverse
compositional algorithms. (It also makes it easier to ingomsors on the motions.)

The derivatives in Table 2 are all fairly straightforwardgcept for the projective 2-D motion
(homography), which requires a per-pixel division to eesdy) c.f. (8), re-written here in its new
parametric form as

, (T +hoo)z + hory + hoo ,  hiwor 4+ (1 + hi)y + hao

i and = 95
hoox + ho1y + 1 J hoox 4 ho1y + 1 (95)
The Jacobian is therefore
ox’' 1 10 00 —2'z —a2
Jp =25 2| "V veomry (96)
op D|0 00z y 1 —yz —yy

whereD is the denominator in (95), which depends on the currentpeier settings (as dd and
Y.
For parametric motion, thidessianandgradient-weighted residual vectbecome

A =3 T (@) [VI () VI ()] T (2:) (97)
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and
= Jw(@)eVI ()] (98)

Note how the expressions inside the square brackets aramhe gnes evaluated for the simpler
translational motion case (80—-81).

Patch-based approximation. The computation of the Hessian and residual vectors fompeira
ric motion can be significantly more expensive than for tlamgtational case. For parametric
motion withn parameters and’ pixels, the accumulation ot andb takes Qn?N) operations
(Baker and Matthews 2004). One way to reduce this by a sigmifiamount is to divide the image
up into smaller sub-blocks (patche3)and to only accumulate the simplei 2 quantities inside
the square brackets at the pixel level (Shum and Szeliski?200

A; = Y VI (z,)VLi(x)) (99)
1€EP;

b = > &VI(x)). (100)
i€p;

The full Hessian and residual can then be approximated as
A~ ZJT, (@)D VI () VI ()T g (25) ZJT, ) A;J g () (101)
1€P;
and
~ = Je(@)]D eV (z ZJT, i (102)
J 1EP;
wherez; is thecenterof each patchP; (Shum and Szeliski 2000). This is equivalent to replacing
the true motion Jacobian with a piecewise-constant appratxon. In practice, this works quite
well. The relationship of this approximation to featureséd registration is discussedsg#h.4.

Compositional approach For a complex parametric motion such as a homography, th@eom
tation of the motion Jacobian becomes complicated, and nvayve a per-pixel division. Szeliski
and Shum (1997) observed that this can be simplified by firgtivwg the target imagé according
to the current motion estimaté(x; p),

L(x) = L(x'(x; p)), (103)
and then comparing thisarpedimage against the templaig(x),
Eix-ss(Ap) = Z[E(.’%(wi; Ap)) — Ip(z;)]?

~ Y [Ji(z)Ap + e)? (104)

i

= Y [VIi(:) T g(x:)Ap + €], (105)

i
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Note that since the two images are assumed to be fairly sinoitdy anincrementalparametric
motion is required, i.e., the incremental motion can bewatald aroungh = 0, which can lead
to considerable simplifications. For example, the Jacobidhe planar projective transform (95)
now becomes

ox
p
Once the incremental motianhas been computed, it can jpependedo the previously estimated
motion, which is easy to do for motions represented withdf@mation matrices, such as those
given in Tables 1-2. Baker and Matthews (2004) call thisfdmevard compositionallgorithm,
since the target image is being re-warped, and the final mestimates are being composed.

If the appearance of the warped and template images is siemtaugh, we can replace the
gradient off; (a) with the gradient of,(x), as suggested previously in (83). This has potentially a
big advantage in that it allows the pre-computation (andision) of the Hessian matri& givenin
(97). The residual vectdr(98) can also be partially precomputed, i.e., sheepest desceimages
VIy(x)J z(x) can precomputed and stored for later multiplication witdhe) = I, (x) — Iy(x)
error images (Baker and Matthews 2004). This idea was figggested by Hager and Belhumeur
(1998) in what Baker and Matthews (2004) cafbavard additivescheme.

Baker and Matthews (2004) introduce one more variant théytloainverse compositional
algorithm. Rather than (conceptually) re-warping the edrparget imagd, (z), they instead
warp the template imagk () and minimize

Eix-pm(Ap) = Y [Li(m) — Io(Z(zs; Ap)))?

> [VIo(;)d g () Ap — €. (107)

(2

Jg =

(106)

ez y 1000 —2* —ay
pZO_OOOxyl—xy—yQ'

Q

This is identical to the forward warped algorithm (105) witie gradients/ I, () replaced by the
gradientsVIy(x), except for the sign of;. The resulting updatép is the negativeof the one
computed by the modified (105), and henceitiverseof the incremental transformation must be
prepended to the current transform. Because the inverspagitional algorithm has the potential
of pre-computing the inverse Hessian and the steepestrigstages, this makes it the preferred
approach of those surveyed in (Baker and Matthews 2004).

[ Note: Add low-res copy of figure from PDFs, then ask SimorpBrmission to use Figure 2
from (Baker and Matthews 2004) and 3 from (Ba&eal.2003a), which show the contrast between
the regular and inverse compositional algorithm. Simillam{ much less elegant) diagrams appear
in (Szeliski and Coughlan 1997), but don’t bother mentigrihis. |

Baker and Matthews (2004) also discusses the advantagengf@auss-Newton iteration (i.e.,
the first order expansion of the least squares, as abovejhes. approaches such as steepest de-
scent and Levenberg-Marquardt. Subsequent parts of thes ¢Bakeret al. 2003a, Bakeet al.
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2003b, Bakeet al. 2004) discuss more advanced topics such as per-pixel viregglpixel selec-
tion for efficiency, a more in-depth discussion of robustmmustand algorithms, linear appearance
variations, and priors on parameters. They make for in\duseading for anyone interested in
implementing a highly tuned implementation of incrementege registration.

[ Note: The following should be discussed later, e.g.54m3: Describe how 3D rotation
updates are made incrementally (Szeliski and Shum 199l length estimation from homogra-
phies (Szeliski and Shum 1997), which should probably gbim8tion models (see placeholder).
Gap closing (Szeliski and Shum 1997). ]

4 Feature-based registration

As | mentioned earlier, directly matching pixel intensstie just one possible approach to image
registration. The other major approach is to first extrastinictive featuresfrom each image,
to next match individual features to establish a globalespondence, and to then estimate the
geometric transformation between the images. This kingppf@ach has been used since the early
days of stereo matching (Hannah 1974, Hannah 1988) and hasretently gained popularity for
image stitching applications (Zoghlamti al. 1997, Capel and Zisserman 1998, Cham and Cipolla
1998, Badreet al. 1998, McLauchlan and Jaenicke 2002, Brown and Lowe 2003).

In this section, | review methods for detecting distinctpants, for matching them, and for
computing the image registration, including the 3D rotatodel introduced i§2.2. | also dis-
cuss the relative advantages and disadvantages of dikéttature-based approaches.

4.1 Interest point detectors

As we saw in§3.4, the reliability of a motion estimate depends mostaalty on the size of the
smallest eigenvalue of the image Hessian matjpAnandan 1989). This makes it a reasonable
candidate for finding points in the image that can be matchéd mgh accuracy. (Older termi-
nology in this field talked about “corner-like” features,tlhe modern usage isterest pointg
Indeed, Shi and Tomasi (1994) propose using this quantfipdayood features to tragkand then
use a combination of translational and affine-based patghraknt to track such points through
an image sequence.

Using a square patch with equal weighting may not be the beste. Instead, a Gaussian
weighting function can be used. Forstner (1986) and Hams Stephens (1988) both proposed
finding interest points using such an approach. The Hessidremenvalue images can be effi-
ciently evaluated using a sequence of filters and algebsacations,

0

Goy () * I(x), (108)
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0

Gylx) = a—yGUd (x) * I(x), (109)
_ Gix)  Gu(x)Gy(z)

B@) = e @@ | (110)

A(@) = Gy (@) B(a) (111)

doa(z) — Qoo + a1 F \/(CL(); —an)?+ @01@10’ (112)

whereG,, is a noise-reducing pre-smoothing “derivative” filter ofdth o4, andG,, is the in-
tegration filter whose scale; controls the effective patch size. (Theg are the entries in the
A(x) matrix, where | have dropped thie) for succinctness.) For example, Forstner (1994) uses
o4 = 0.7 ando; = 2. Once the minimum eigenvalue image has been computed,if@ama can
be found as potential interest points.

The minimum eigenvalue is not the only quantity that can bEdus find interest points. A
simpler quantity, proposed by Harris and Stephens (1988) is

det(A) —Q traCQA)Q = XA — O[()\Q + )\1)2 (113)
with o = 0.06. Triggs (2004) suggest using the quantity
Ao — aAy (114)

(say witha = 0.05), which reduces the response at 1D edges, where aliasiog swmetimes
affect the smaller eigenvalue. He also shows how the basic2 Hessian can be extended to
parametric motions to detect points that are also accyrktedlizable in scale and rotation.

Schmidet al. (2000) survey the vast literature on interest point dedacéind perform some
experimental comparisons to determine yeeatabilityof feature detectors, which is defined as
the frequency with which interest points detected in onegenare found withire = 1.5 pixels of
the corresponding location in a warped image. They also mneaiseinformation contenavailable
at each detected feature point, which they define as thepgntiioa set of rotationally invariant
local grayscale descriptors. Among the techniques theyeguthey find that ammprovedversion
of the Harris operator witlv;, = 1 ando; = 2 works best. (The original Harris and Stephens
(1988) paper uses a discrete2 —1 0 1 2] filter to perform the initial derivative computations, and
performs much worse.)

More recently, feature detectors that are more invariast&be (Lowe 2004, Mikolajczyk and
Schmid 2004) and affine transformations (Mikolajczyk antir8icl 2004) have been proposed.
These can be very useful when matching images that haveatitfecales or aspects (e.g., for 3D
object recognition). A simple way to achieve scale invar@is to look for scale-space maxima
in a Difference of Gaussian (DOG) (Lowe 2004) or Harris coiiMikolajczyk and Schmid 2004,
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Triggs 2004) detector over a sub-octave pyramid, i.e., agarpyramid where the subsampling
between adjacent levels is less than a factor of two. Lowegsal (2004) paper uses a half-octave
(v/2) pyramid, whereas Triggs (2004) recommends using a quactave ¢/2).

Of course, interest points are not the only kind of featuled tan be used for registering
images. Zoghlamet al. (1997) use line segments as well as point-like featurestimate ho-
mographies between pairs of images, whereas (Batai. 2004) use line segments with local
correspondences along the edges to extract 3D structurenatidn. Tuytelaars and Van Gool
(2004) use affine invariant regions to detect corresporddémewide baseline stereo matching.
Mataset al. (2004) detecimaximally stable regionsising an algorithm related to watershed detec-
tion, whereas Kadiet al. (2004) detect salient regions where patch entropy andtgsofechange
with scale are locally maximal. While these techniques camided to solve image registration
problems, they will not be covered in more detail in this gyrv

4.2 Feature matching

After detecting the features (interest points), we mmatchthem, i.e., determine which features
come from corresponding locations in different images. dms situations, e.g., for video se-
guences (Shi and Tomasi 1994) or for stereo pairs that haareréetified (Loop and Zhang 1999,
Scharstein and Szeliski 2002), the local motion around éasature point may be mostly trans-
lational. In this case, the error metrics introduced®1 such asssp or Excc can be used
to directly compare the intensities in small patches arcesxh feature point. (The comparative
study by Mikolajczyk and Schmid (2003) discussed below gsass-correlation.) Because feature
points may not be exactly located, a more accurate matchomg €an be computed by performing
incremental motion refinement as describef3m, but this can be time consuming.

If features are being tracked over longer image sequertugis apppearance can undergo larger
changes. In this case, it makes sense to compare appeausiugsnaffinemotion model. Shi
and Tomasi (1994) compare patches using a translationatlhhetiveen neighboring frames, and
then use the location estimate produced by this step taliziti an affine registration between
the patch in the current frame and the base frame where ardeats first detected. In fact,
features are only detected infrequently, i.e., only in@agihere tracking has failed. In the usual
case, an area around the currpradictedlocation of the feature is searched with an incremental
registration algorithm. This kind of algorithm isdetect then traclapproach, since detection
occurs infrequently. It is appropriate for video sequenebsre the expected locations of feature
points can be reasonably well predicted.

For larger motions, or for matching collections of imagesewhthe geometric relationship
between them is unknown (Schaffalitzky and Zisserman 280@wn and Lowe 2003), detect
then matchapproach in which feature points are first detected in allg@esas more appropriate.
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Because the features can appear at different orientatiopsates, a morgiew invariantkind of
representation must be used. Mikolajczyk and Schmid (2683gw some recently developed
view-invariant local image descriptors and experimeptatimpare their performance.

The simplest method to compensate for in-plane rotations fsnd adominant orientation
at each feature point location before sampling the patchloeravise computing the descriptor.
Mikolajczyk and Schmid (2003) use the direction of the agergradient orientation, computed
within a small neighborhood of each feature point. The dpgarcan be made invariant to scale
by only selecting feature points that are local maxima ihesspace, as discussedsh.1. Making
the descriptors invariant to affine deformations (stresgjuash, skew) is even harder; Mikolajczyk
and Schmid (2004) use the local second moment matrix aroteat@re point to define a canonical
frame.

Among the local descriptors that Mikolajczyk and SchmidG0compared, In their exper-
imental comparisons, Mikolajczyk and Schmid (2003) fouhdttSIFT features generally per-
formed best, followed by steerable filters,

David Lowe’s (2004) Scale Invariant Feature Transform {SI§enerally performed the best,
followed by Freeman and Adelson’s (1991) steerable filtedsthen cross-correlation (which could
potentially be improved with an incremental refinement aliton and pose). Differential invari-
ants, whose descriptors are insensitive to changes intatien by design, did not do as well.

SIFT features are computed by first estimating a local caitéart using a histogram of the local
gradient orientations, which is potentially more accutatn just the average orientation. Once
the local frame has been established, gradients are capiedlifferent orientation planes, and
blurred resampled versions of these images as used as theegeaThis provides the descriptor
with some insensitivity to small feature localization esrand geometric distortions (Lowe 2004).

Steerable filters are combinations of derivative of GaussBiters that permit the rapid com-
putation of even and odd (symmetric and anti-symmetricedd@ and corner-like features at all
possible orientations (Freeman and Adelson 1991). Bedhegaise reasonably broad Gaussians,
they too are somewhat insensitive to localization and ¢eiém errors.

Rapid indexing and matching. The simplest way to find all corresponding feature pointsin a
image pair is to compare all features in one image again$¢atiires in the other, using one of
the local descriptors described above. Unfortunatelg, hguadratic in the expected number of
features, which makes it impractical for some applications
More efficient matching algorithms can be devised usingedtifit kinds oindexing schemes

Many of these are based on the idea of finding nearest neigltibbrgh-dimensional spaces. For
example, Nene and Nayar (1997) developed a technique thleslicang that uses a series of 1D
binary searches to efficiently cull down a list of candidatenfs that lie within a hypercube of the
guery point. They also provide a nice review of previous wiarkhis area, including spatial data
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structures such asd trees (Samet 1989). Beis and Lowe (1997) propose a BesFiBst (BBF)
algorithm, which uses a modified search ordering férétree algorithm so that bins in feature
space are searched in the order of their closest distancedtery location. Shakhnaroviat
al. (2003) extend a previously developed technique cdbiedlity-sensitive hashingvhich uses
unions of independently computed hashing functions, to beemsensitive to the distribution of
points in parameter space, which they gatameter-sensitive hashinBespite all of this promis-
ing work, the rapid computation of image feature corresgoieés is far from being a solved
problem.

RANSAC and LMS. Once an initial set of feature correspondences has beenutethpwve
need to find a set that is will produce a high-accuracy alignm®ne possible approach is to
simply compute a least squares estimate, or to use a robdditeratively re-weighted) version
of least squares, as discussed bel®tv3). However, in many cases, it is better to first find a good
starting set oinlier correspondences, i.e., points that are all consistentswitire particular motion
estimatet*

Two widely used solution to this problem are called RANdommg»?e Consensus, or RANSAC
for short (Fischler and Bolles 1981) atehst median of squardsMS) (Rousseeuw 1984). Both
techniques start by selecting (at random) a subsét adrrespondences, which is then used to
compute a motion estimage as described if4.3. Theresidualsof the full set of correspondences
are then computed as

ri = &(x;p) — &, (115)
where z; are theestimated(mapped) locations, andt, are the sensed (detected) feature point
locations.

The RANSAC technique then counts the numbeingérs that are withire of their predicted
location, i.e., whosdir;|| < e. (Thee value is application dependent, but often is around 1-3
pixels.) Least median of squares finds the median value dfithevalues.

The random selection process is repeatetimes, and the sample set with largest number
of inliers (or with the smallest median residual) is kept las tinal solution. Either the initial
parameter guegsor the full set of computed inliers is then passed on to th¢ da&ta fitting stage.

To ensure that the random sampling has a good chance of fiadiing set of inliers, a sufficient
number of trialsS must be tried. Lep be the probability that any given correspondence is valid,
andP be the total probability of success aftetrials. The likelihood in one trial that all random
samples are inliers ig*. Therefore, the likelihood that such trials will all fail is

1-P=(1-p"° (116)

YFor direct estimation methods, hierarchical (coarsefte)fiechniques are often used to lock ontodbeninant
motionin a scene (Bergeet al. 1992).
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and the required minimum number of trials is
_ log(1—P)
- log(1 —pk)’

Stewart (1999) gives the following examples of the requirechber of trialsS to attain a 99%
probability of success:

(117)

k| p| S
3105 35
606| 97|
60.5]293

As you can see, the number of trials grows quickly with the hanof sample points used. This
provides a strong incentive to use tmeimumnumber of sample points possible for any given
trial, which in practice is how RANSAC is normally used.

4.3 Geometric registration

Once we have computed a set of matched feature point corrdspoes, the next stip is to estimate
the motion parametegsthat best register the two images. The usual way to do thsusée least
squares, i.e., to minimize the sum of squared residualsdiy€115),

Es =} |Irill* = [1&(z:; p) — & (118)

Many of the motion models presented§®, i.e., translation, similarity, and affine, havéireear
relationship between the motion and the unknown parametétsin this case, a simple linear
regression (least squares) using normal equatims= b works well.

Uncertainty weighting and robust regression. The above least squares formulation assumes
that all feature points are matched with the same accurduy.i3 often not the case, since certain
points may fall in more textured regions than others. If weoagate a variance estimatg with
each correspondence, we can minimiagghted least squaresstead,

EWLS = 20;2"7"1‘"2. (119)

As discussed i133.4, a covariance estimate for patch-based matching camta@ed by multi-
plying the inverse of the Hessian with the per-pixel noigeste (84). Weighting each squared

152-D Euclidean motion can be estimated with a linear algorithy first estimating the cosine and sine entries
independently, and then normalizing them so their mageitsd..
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residual by the inverse covarianggs' = o, 2A; (which is called thenformation matriy, we
obtain

Ecwis =D _|rills+ = Yo ris e =3 o %rl Agr, (120)

whereA; is thepatch Hessiarf99).

If there are outliers among the feature-based correspaeddand there almost always are), it
is better to use a robust version of least squares, evenriiized RANSAC or MLS stage has been
used to select plausible inliers. The robust least squastswetric (analogous to (44)) is then

Eris(u) =3 plllrills). (121)

As before, a commonly used approach to minimize this quaistito use iteratively re-weighted
least squares, as described 8.

Homography update. Fornon-linearmeasurement equations such as the homography given in
(95), rewritten here as

{i’/ _ (1 + hoo)l‘ + hmy + hog and g, _ hlol‘ + (1 + hn)y + h12

hoox + ho1y + 1 hoox 4 ho1y + 1

, (122)

an iterative solution is required to obtain accurate resuin initial guess for the 8 unknowns
{hoo, - - ., ho1} can be obtained by multiplying both sides of the equatiorsutgh by the denomi-
nator, which yields the linear set of equations,

hOO

afj’—x Ty 1 000 —3}"’:1: —%’y . (123)
v -y 0002y 1 =g —gy
h21

However, this is not optimal from a statistical point of viesince the denominator can vary quite
a bit from point to point.

One way to compensate for this isreweighteach equation by the inverse of current estimate
of the denominator),

oy oy oy hOO
1V —-z| 112y 1000 -2z -2y .
J-y| D000yl —go —gy||

5 (124)

D
a1

While this may at first seem to be the exact same set of equadi®if123), since least squares is
being used to solve the over-determined set of equatioasy#ightingsdo matter, and result in a
different set of normal equations that perform better ircpca (with noisy data).
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The most principled way to do the estimation, however, isitealy minimize the squared
residual equations (115) using the Gauss-Newton appraxima.e., performing a first-order Tay-
lor series expansion ip, which yields,

i'; - i;(w“p) = JxAp (125)
or

(126)

AP . _ Ahqgo
{ = ] 1 [ xry 1 00 0 =3z -2y ,
=5 :

-7 | D000z y 1l —gzr —fy

Ahgy

While this looks similar to (124), it differs in two importanespects. First, the left hand side
consists of unweightegrediction errorsrather than pixel displacements, and the solution vector
is aperturbationto the parameter vectgr. Second the quantities insidgy involve predicted
feature location$z’, 7') instead ofsensedeature locationsz’, y'). Both of these are subtle and
yet they lead to an algorithm that, when combined with praecking for downhill steps (as in
the Levenberg-Marquardt algorithm), will converge to a mmiam. (Iterating the (124) equations
is not guaranteed to do so, since it is not minimizing a wefired energy function.)

The above formula is analagous to #alitivealgorithm for direct registration since the change
to thefull transformation is being computed. If we prepend an increatdromography to the
current homography instead, i.e., we ussoapositionaklgorithm, we getD = 1 (sincep = 0)
and the above formula simplifies to

P 1000 —22 — Ao
{x x]:{xy x xy : | (127)

7 —y 0002y 1 —ay —y?

Ahgy
where | have replace(it’, §') with (x,y) for conciseness. (Notice how this results in the same
Jacobian as (106).)

Rotational panorama update. As described ir§2.2, representing the alignment of images in a
panorama using a collection of rotation matrices and famadjths results in a much more stable
estimation problem than directly using homographies (Skel996, Szeliski and Shum 1997).
Given this representation, how do we update the rotatiomicestto best align two overlapping
images?

Recall from (18-19) that the equations relating two viewsloa written as

Ty ~ I:.Iloi'() with .EIlO = KlRloKal, (128)
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where K, = diad f, fx, 1) is the calibration matrix and,, = Rle1 is rotationbetweerthe
two views. The best way to updale,, is to prepend aimcrementalrotation matrixR (<) to the
current estimatd?;, (Szeliski and Shum 1997, Shum and Szeliski 2000),

H(5) = K\ R(&)RuK;' = [K\R(@)K;|[K\RK,"| = DHy.  (129)

Note that here | have written the update rule in toenpositionaform, where the incremental
updateD is prependedo the current homographb,,. Using the small-angle approximation to
R(&) given in (25), we can write the incremental update matrix as

1 —w,  fiwy
D=KROK'~ K (I+[J,)K'= W, 1 —fiw, | b (130)

—Wy/f1 wm/fl 1

Notice how there is now a nice one-to-one correspondenaecket the entries in th® matrix
and thehyy, . . ., ho; parameters used in Table 2 and (122), i.e.,

(hoo, hot, hoz, hoo, hat, haa, hoo, ho1) = (0, —w., Jiwy, w2, 0, — fiw, _wy/flu we/ f1)- (131)
We can therefore apply the chain rule to (127) and (131) tainbt

Wy

[i’—x] :[ —ay/fi  ht+2f -y (132)
y —(

h+vif) aylf e [

which give us the linearized update equations needed toastis = (w,,w,,w,).X® Notice that
this update rule depends on the focal lengjtlof thetargetview, and is independent of the focal
length f, of the templateview. This is because the compositional algorithm essintaakes
small perturbations to the target] Note: see (Szeliski and Shum 1997) for some figures to add
here. ]

The formulas for updating the focal length estimates aréla nhore involved, and are given
in (Shum and Szeliski 2000). | will not repeat them here, siag alternative update rule, based on
minimizing the difference between back-projected 3D rayh be given in§5.1.

Focal length initialization [ Note: Copy the text here from (Szeliski and Shum 1997). ]

18This is the same as the rotational component of instantanggid flow (Bergeret al. 1992) and the same as the
update equations given in (Szeliski and Shum 1997, Shum aeliss 2000).
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4.4 Direct vs. feature-based

Given that there are these two alternative approachesgoiadj images, which is preferable?

| used to be firmly in the direct the direct matching camp (dsigt al. 2000). Early feature-
based methods seemed to get confused in regions that wkes @b textured or not textured
enough. The features would often be distributed uneverdy the images, thereby failing to match
image pairs that should have been aligned. Furthermorablesting correspondences relied on
simple cross-correlation between patches surroundinfgtitare points, which did not work well
when the images were rotated or had foreshortening due todu@phies.

Today, feature detection and matching schemes are rentarkdlost, and can even be used for
known object recognition from widely separated views (Ld2@®4). Features not only respond
to regions of high “cornerness” (Forstner 1986, Harris Stephens 1988), but also to “blob-like”
regions (Lowe 2004), as well as uniform areas (Tuytelaacs\&an Gool 2004). Furthermore,
because they operate in scale-space and use a dominartaboierfor orientation invariant de-
scriptors), they can match images that differ in scale,ntaigon, and even foreshortening. My
own recent experience in working with feature-based ampresi is that if the features are well
distributed over the image and the descriptors reasonasigded for repeatability, enough corre-
spondences to permit image stitching can usually be found.

The other major reason | used to prefer direct methods washeyg make optimal use of the
information available in image alignment, since they meashe contribution okverypixel in
the image. Furthermore, assuming a Gaussian noise modalr@bustified version of it), they
properly weight the contribution of different pixels, €.gy emphasizing the contribution of high-
gradient pixels. (See Baket al. (2003a), who suggest that adding even more weight at strong
gradients is preferable because of noise in the gradiemha&sts.) One could argue that for a
blurry image with only slowly varying gradients, a direcpapach will find an alignment, whereas
a feature detector will fail to find anything. However, suctages rarely occur in practice, and the
use of scale-space features means that some features cambeat lower resolutions.

The biggest disadvantage of direct techniques is that theg & limited range of convergence.
Even though they can be used in a hierarchical (coarse-¢p-dstimation framework, but in prac-
tice, it is hard to use more than two or three levels of a pydabefore important details start to
be blurred away. For matching sequential frames in a videmdirect approach can usually be
made to work. However, for matching partially overlappingages in photo-based panoramas,
they fail too often to be useful. My older systems for image&king (Szeliski 1996, Szeliski and
Shum 1997) relied on Fourier-based correlation of cylicalimages and motion prediction to au-
tomatically align images, but had to be corrected by handimre complex sequences. My newer
system, built in collaboration with Matthew Brown (who fissiggested recognizing panoramas),
uses features and has a good success rate at automatitelingtpanoramas without any user
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intervention. [ Note: Add a cite here to MOPs paper, either as a MSR-TR, drgubmission to
CVPR.]

Is there no rdle then for direct registration? | believer¢his. Once a pair of images has been
aligned with a feature-based approach, we can warp the tagesito a common reference frame
and re-compute a more accurate estimate using patch-blagetant. Notice how there is a close
correspondence between the patch-based approximatiaretr dlignment given in (101-102)
and the inverse covariance weighted feature-based lea@atesyjerror metric (120).

In fact, if we divide the template images up into patches alagdgan imaginary “feature
point” at the center of each patch, the two approaches retxently the same answer (assuming
that the correct correspondences are found in each case)eudq for this approach to succeed,
we still have to deal with “outliers”, i.e., regions that dofit the selected motion model due
to either parallax5.2) or moving objects§6.2). While a feature-based approach may make it
somewhat easier to reason about outliers (features caassfed as inliers or outliers), the patch-
based approach, since it establishes correspondencesiarely, is potentially more useful for
removing local mis-registration (parallax), as we disansb.2.

5 Global registration

So far, I have discussed how to register pairs of images tsitigdirect and feature-based methods
using a variety of motion models. In most applications, we given more than a single pair
of images to register. The goal is to findglobally consistenset of alignment parameters that
minimize the mis-registration between all pairs of imagesefiski and Shum 1997, Shum and
Szeliski 2000, Sawhney and Kumar 1999, Coorg and Teller gQ@®rder to do this, we need to
extend the pairwise matching criteria (43), (92), and (1@&) global energy function that involves
all of the per-image pose paramete§5.(). Once we have computed the global alignment, we
often need to perfornocal adjustmentsuch agparallax removalto reduce double images and
blurring due to local mis-registration§5.2). Finally, if we are given an unordered set of images
to register, we need to discover which images go togethesrta bne or more panoramas. This
process opanorama recognitioms described ir§5.3.

5.1 Bundle adjustment

One way to register a large number of images is to add new igtaghe panorama one at a time,
aligning the most recent image with the previous ones ajreathe collection (Szeliski and Shum
1997), and discovering, if necessary, which images it apsrl(Sawhney and Kumar 1999). In
the case oB60° panoramas, accumulated error may lead to the presencegays @r excessive

overlap) between the two ends of the panorama, which can ée iy stretching the alignment
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of all the images using a process caltgp closing(Szeliski and Shum 1997). However, a better
alternative is to simultaneously align all the images tbgeusing a least squares framework to
correctly distribute any mis-registration errors.

The process of simultaneously adjusting pose parametessléoge collection of overlapping
images is calledundle adjustmenin the photogrammetry community (Triggs al. 1999). In
computer vision, it was first applied to the general strietfsom motion problem (Szeliski and
Kang 1994), and then later specialized for panoramic imégehsg (Shum and Szeliski 2000,
Sawhney and Kumar 1999, Coorg and Teller 2000).

In this section, | formulate the problem of global alignmesing a feature-based approach,
since this results in a simpler system. An equivalent diagpgiroach can be obtained either by di-
viding images into patches and creating a virtual featureespondence for each one (as discussed
in §4.4 and (Shum and Szeliski 2000)), or by replacing the patufe error metrics with per-pixel
metrics.

Consider the feature-based alignment problem given in)(1E8,

Epairwise-Ls = Z l7ill* = (|2 (x:; p) — 23] (133)

For multi-image alignment, instead of having a single altn of pairwise feature correspon-
dences{(x;, )}, we have a collection aof features, with the location of thih feature point in
the jth image denoted by;; and its scalar confidence (inverse variance) denoted,8y Each
image also has some associgbedeparameters.

In this section, | assume that this pose consists of a raotatiatrix R; and a focal length
f;, although formulations in terms of homographies are alssipte (Shum and Szeliski 1997,
Sawhney and Kumar 1999). The equation mapping a 3D pgintto a pointz;; in framej can
be re-written from (15-19) as

z; ~ K;Rx; and z; ~ R;'K; &, (134)

where K ; = diag(f;, f;, 1) is the simplified form of the calibration matrix. The motiorapping
a pointz;; from framej into a pointx;;, in framek is similarly given by

&y ~ Hyay = KRR 'K ' 2. (135)

Given an initial set of (R;, f;)} estimates obtained from chaining pairwise alignments, dow
we refine these estimates?

"Features that not seen in imagbavec;; = 0. We can also usg x 2 inverse covariance matrices; in place of
¢ij, as shown in (120).
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One approach is to directly extend the pairwise enérgy,yis.—r.s (133) to a multiview for-
mulation,

Eal—pairs—20 = > Y CijCik|| @ik (Zij; Ry, [5, Rie, fie) — @[, (136)
i gk

where thex;; function is thepredictedlocation of featurei in frame k given by (135),z;; is
the observedocation, and the “2D” in the subscript indicates than angmsalane error is being
minimized (Shum and Szeliski 1997). Note that siagg depends on the;; observed value,
we actually have amrrors-in-variableproblem, which in principle requires more sophisticated
techniques than least squares to solve. However, in peadtiwe have enough features, we can
directly minimize the above quantity using regular noreéinleast squares and obtain an accurate
multi-frame alignment?®

While this approach works well in practice, it suffers frowotpotential disadvantages. First,
since a summation is taken over all pairs with correspontBatures, features that are observed
many times get overweighted in the final solution. (In effecfeature observeth times gets
counted(g) times instead ofn times.) Second, the derivatives ®f;, w.r.t. the{(R;, f;)} are a
little cumbersome, although using the incremental coiwadb R; introduced in§2.2 makes this
more tractable.

An alternative way to formulate the optimization is to usestbundle adjustment, i.e., to solve
not only for the pose parametef&R;, f;)} but also for the 3D point positionge; },

Ega_op = Y cijll@i(xs; Ry, f) — @457, (137)
iy

wherez;;(x;; R;, f;) is given by (134). The disadvantage of full bundle adjustn®that there
are more variables to solve for, so both each iteration amdWerall convergence may be slower.
(Imagine how the 3D points need to “shift” each time sometiotamatrices are updated.) How-
ever, the computational complexity of each linearized Gadswton step can be reduced using
sparse matrix techniques (Szeliski and Kang 1994, Shum aeliss 2000, Trigget al. 1999).

An alternative formulation is to minimize the error in 3D poted ray directions (Shum and
Szeliski 2000), i.e.,

Ega_sp = ZZ%H@(@M; Rj7 fj) - wz‘HQ, (138)
g

wherez;(z;;; R;, f;) is given by the second half of (134). This in itself has noipafar advantage
over (137). In fact, since errors are being minimized in 3 space, there is a bias towards
estimating longer focal lengths, since the angles betwagnliecome smaller gsincreases.

18while there exists an overall pose ambiguity in the solutien, all theR; can be post-multiplied by an arbitrary
rotation R, a well-conditioned non-linear least squares algorithchsas Levenberg Marquardt will handle this
degeneracy without trouble.
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However, if we eliminate the 3D rays;, we can derive a pairwise energy formulated in 3D ray
space (Shum and Szeliski 2000),

Eall_pairs—30 = Y Y Cijci||®:(Zij; Ry, f7) — &i(Taw; Rie, fio)]>. (139)
i gk

This results in the simplest set of update equations (Shuh&aeliski 2000), since thé, can be
folded into the creation of the homogeneous coordinateovex in (20). Thus, even though this
formula over-weights features that occur more frequeittiy,the method used both by Shum and
Szeliski (2000) and in my current work. In order to reducelifss towards longer focal lengths,
| multiply each residual (3D error) b)(/f?, which is similar to projecting the 3D rays into a
“virtual camera” of intermediate focal length, and whicles® to work well in practice.

Up vector selection. As mentioned above, there exists a global ambiguity in trse@d the 3D
cameras computed by the above methods. While this may netaapp matter, people do have a
preference for the final stitched image to be “upright” rathan twisted or tilted. More concretely,
people are used to seeing photographs displayed so thaetheal (gravity) axis points straight
up in the image. Consider how you usually shoot photograpligle you may pan and tilt the
camera any which way, you usually keep vertical scene limeallel to the vertical edge of the
image. In other words, the horizontal edge of your camesa:{#xis) usually stays parallel to the
ground plane (perpendicular to the world gravity direc}ion

Mathematically, this constraint on the rotation matricaa be expressed as follows. Recall
from (134) that the 3B-2D projection is given by

We wish to post-multiply each rotation matri®;, by a global rotationR, such that the projection
of the globaly-axis,j = (0, 1,0) is perpendicular to the imageaxis,? = (1,0, 0).*°
This constraint can be written as
V" RyR,7 =0 (141)

(note that the scaling by the calibration matrix is irrel@vaere). This is equivalent to requiring
that the first row ofR;, 74, = @' R, be perpendicular to the second columnif, r,1 = R,).
This set of constraints (one per input image) can be writtem l@ast squares problem,

Tg = arg n}rin Zk:("“TTko)z = arg n}rin r [Zk: rkor%] r. (142)

9Note that here we use the convention common in computer gisfitat the vertical world axis correspondsto
This is a natural choice if we wish the rotation matrix asated with a “regular” image taken horizontally to be the
identity, rather than 80° rotation around the-axis.
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Thus,r,; is the smallest eigenvector of tiseatteror momentmatrix spanned by the individual
camera rotationx-vectors, which should generally be of the fofmO0, s) when the cameras are
upright.

To fully specify the R, global rotation, we need to specify one additional constrailhis
is related to theview selectiorproblem discussed if6.1. One simple heuristic is to prefer the
averagez-axis of the individual rotation matricek, = 5", I%TRk to be close to the world-axis,
re = Ryk. We can therefore compute the full rotation matRy in three steps:

1. ry1 = min eigenvectoy";, rroriy);

2. 10 = N((XpTr2) X 7g1);
3. Tgo = Tgo X Tg1,

whereN (v) = v/||v|| normalizes a vectow.

5.2 Parallax removal

Once we have optimized the global orientations and focgtlesof our cameras, we may find that
the images are still not perfectly aligned, i.e., the resglstitched image looks blurry or ghosted
in some places. This can be caused by a variety of factorsidimg unmodeled radial distortion,
3D parallax (failure to rotate the camera around its optiegiter), small scene motions such as
waving tree branches, and large-scale scene motions spegopke moving in and out of pictures.

Each of these problems can be treated with a different apprdaadial distortion can be es-
timated (potentially before the camera’s first use) using ohthe techniques discussedsi2.4.
For example, th@lumb line methodBrown 1971, Kang 2001, El-Melegy and Farag 2003) ad-
justs radial distortion parameters until slightly curvetes become straight, while mosaic-based
approaches adjust them until mis-registration is reduc@nage overlap areas (Stein 1997, Sawh-
ney and Kumar 1999).

3D parallax can be attacked by doing a full 3D bundle adjustme., replacing the projection
equation (134) used in (137) with (15), which models cameniasiations. The 3D positions of the
matched features points and cameras can then be simul&neecovered, although this can be
significantly more expensive that parallax-free imagestegiion. Once the 3D structure has been
recovered, the scene could (in theory) be projected to desilegntral) viewpoint that contains
no parallax. However, in order to do this, derstereocorrespondence needs to be performed
(Kumar et al. 1995, Szeliski and Kang 1995, Scharstein and Szeliski 200&ich may not be
possible if the images only contain partial overlap. In tbas$e, it may be necessary to correct
for parallax only in the overlap areas, which can be accashpli using #Multi-Perspective Plane
SweedMPPS) algorithm (Uyttendaeks al. 2004, Kanget al. 2004).
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When the motion in the scene is very large, i.e., when obgggtear and disappear completely,
a sensible solution is to simpbelectpixels from only one image at a time as the source for the
final composite (Milgram 1977, Davis 1998, Agarwalal.2004), as discussed §#6.2. However,
when the motion is reasonably small (on the order of a fewlpjxgeneral 2-D motion estimation
(optic flow) can be used to perform an appropriate corrediefore blending using a process called
local alignment(Shum and Szeliski 2000, Kargg al. 2003). This same process can also be used
to compensate for radial distortion and 3D parallax, algioi uses a weaker motion model than
explicitly modeling the source of error, and may therefai more often or introduce unwanted
distortions.

The local alignment technique introduced by Shum and Sa€R00) starts with the global
bundle adjustment (139) used to optimize the camera posese (ese have been estimated,
the desiredlocation of a 3D pointe; can be estimated as tlawerageof the back-projected 3D
locations,

T~ ) @iy Ry, f), (143)
j

which can be projected into each imagt obtain atarget locationz,;. The difference between
the target location®;; and the original features;; provide a set of local motion estimates

Ui = T — T4, (144)

which can be interpolated to form a dense correction fieltc;). In their system, Shum and
Szeliski (2000) use amverse warpingalgorithm where the sparseu,; values are placed at the
new target locations;;, interpolated using bilinear kernel functions (Nielso®3Pand then added
to the original pixel coordinates when computing the warfmeatrected) image. In order to get a
reasonably dense set of features to interpolate, Shum al$Z2000) place a feature point at
the center of each patch (the patch size controls the smesdhnthe local alignment stage), rather
than relying of features extracted using an interest operat

An alternative approach to motion-based de-ghosting waisgsed by Kanegt al. (2003), who
estimate dense optical flow between each input image andi@abefierencamage. The accuracy
of the flow vector is checked using a photo-consistency nredsefore a given warped pixel is
considered valid and therefore used to compute a high dymeanpge radiance estimate, which
is the goal of their overall algorithm. The requirement favimg a reference image makes their
approach less applicable to general image mosaicing, wthan extension to this case could
certainly be envisaged.

5.3 Recognizing panoramas

The final piece needed to perform fully automated imagelstitcis a technique to recognize
which images actually go together, which Brown and Lowe @@&ll recognizing panoramadf
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the user takes images in sequence so that each image ovieslapsdecessor and also specifies
the first and last images to be stitched, bundle adjustmenbid with the process abpology
inferencecan be used to automatically assemble a panorama (Sawhdé§uamar 1999). How-
ever, users often jump around when taking panoramas, bay.,may start a new row on top of
a previous one, or jump back to take a repeated shot, or ciéétgpanoramas where end-to-end
overlaps need to be discovered. Furthermore, the abilitstwover multiple panoramas taken by
a user over an extended period of time can be a big convenience

To recognize panoramas, Brown and Lowe (2003) first find atixpse image overlaps using
a feature-based method and then find connected componehts averlap graph to “recognize”
individual panoramas (Figure ??7?). Note: Add figure here from (Brown and Lowe 2003), then
ask Matt Brown if it's 0.k. J[The feature-based matching stage first extracts SIFT fe&igations
and feature descriptors (Lowe 2004) from all the input insa@y@d then places these in an indexing
structure, as described i#.2. For each image pair under consideration, the neareshing
neighbor is found for each feature in the first image, usimgitidexing structure to rapidly find
candidates, and then comparing feature descriptors toHmtest match. RANSAC is then used
to find a set oinlier matches, using a pairs of matches to hypothesize a singitfaotion model
that is then used to count the number of inliers.

[ Note: The following still needs to be written:

In practice, may be erroneous matches, need a way to “backarunake the process more
robust.

Show example where solution is ambiguous: Doorway w/ trematredral with windows vs.
moving persons ]

6 Compositing

Once we have registered all of the input images with respeeath other, we need to decide how
to produce the final stitched (mosaic) image. This involadeding a final compositing surface

(flat, cylindrical, spherical, etc.) and view (referenceagm). It also involves selecting which pixels
contribute to the final composite and how to optimally blemese pixels to minimize visible seams,
blur, and ghosting.

In this section, | review techniques that address theselgmd) namely compositing surface
parameterization, pixel/seam selection, blending, anmb&xre compensation. My emphasis is
on fully automatedapproaches to the problem. Since the creation of high4yyadinoramas and
composites is as much amtistic endeavor as a computational one, various interactive taole
been developed to assist this process, e.g., (Agaretadh 2004, Liet al. 2004a, Rotheet al.
2004), which | will not cover, except where they provide amé&ded solutions to our problems.
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6.1 Choosing a compositing surface

The first choice to be made is how to represent the final imdgmly a few images are stitched
together, a natural approach is to select one of the imag#seasferenceand to then warp all
of the other images into the reference coordinate systera.r@sulting composite is calledflat
panorama, since the projection onto the final surface isasplerspective projection, and hence
straight lines remain straight (which is often a desiratietate).

For larger fields of view, however, we cannot maintain a flpt@sentation without excessively
stretching pixels near the border of the image. (In practiaepanoramas start to look severely dis-
torted once the field of view excee@® or so.) The usual choice for compositing larger panoramas
is to use a cylindrical (Szeliski 1994, Chen 1995) or spla(iszeliski and Shum 1997) projection,
as described i§2.3. In fact, any surface used fenvironment mappinm computer graphics can
be used, including aube maghat represents the full viewing sphere with the six squaces of
a box (Greene 1986, Szeliski and Shum 1997). Cartograplaeesdiso developed a number of
alternative methods for representing the gldhdote: find a reference here; ask MattU? |

The choice of parameterization is somewhat applicatioredéent, and involves a tradeoff
between keeping the local appearance undistorted (eapirgpstraight lines straight) and provid-
ing a reasonably uniform sampling of the environment. Awbtoally making this selection and
smoothly transitioning between representations baseteaxtent of the panorama is an interest-
ing topic for future research.

View selection. Once we have chosen the output parameterization, we séil bee determine
which part of the scene will beenteredn the final view. As mentioned above, for a flat composite,
we can choose one of the images as a reference. Often, a abésahoice is the one that is
geometrically most central. For example, for rotationahggamas represented as a collection
of 3D rotation matrices, we can choose the image wheagis is closest to the averageaxis
(assuming a reasonable field of view). Alternatively, we aa@ the average-axis (or quaternion,
but this is trickier) to define the reference rotation.

For larger (e.g., cylindrical or spherical) panoramas, ae still use the same heuristic if a
subset of the viewing sphere has been imaged. If the casdl @6fki panoramas, a better choice
might be to choose the middle image from the sequence ofsnputsometimes the first image,
assuming this contains the object of greatest interestl bf these cases, having the user control
the final view is often highly desirable. If the “up vector’mputation described i§6.1 is working
correctly, this can be as simple as panning over the imagetting a vertical “center line” for the
final panorama. [ Note: Add a figure here showing the difference before andraip vector
estimation. ]
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Coordinate transformations. Once we have selected the parameterization and refereese vi
we still need to compute the mappings between the input atpdibpixels coordinates.

If the final compositing surface is flat (e.g., a single plan¢he face of a cube map) and the
input images have no radial distortion, the coordinatesfi@mation is the simple homography
described by (19). This kind of warping can be performed apbics hardware by appropriately
setting texture mapping coordinates and rendering a smgldrilateral.

If the final composite surface has some other analytic forn (eylindrical or spherical), we
need to convert every pixel in the final panorama into a vigwiay (3D point) and then map
it back into each image according to the projection (andooytlly radial distortion) equations.
This process can be made more efficient by precomputing sookeip tables, e.g., the partial
trigonometric functions needed to map cylindrical or sptarcoordinates to 3D coordinates, or
the radial distortion field at each pixel. Itis also be pokesib accelerate this process by computing
exact pixel mappings on a coarser grid and then interpgjdtiase values. An efficient way to
roughly know which portions of the final panorama are covénednhich input images can also be
helpful.

When the final compositing surface is a texture-mapped algdn, a slightly more sophis-
ticated algorithm must be used (Szeliski and Shum 1997). ddiyt do the 3D and texture map
coordinates have to be properly handled, but a small amduoterdrawoutside of the triangle
footprints in the texture map is necessary, to ensure tedettiure pixels being interpolated during
3D rendering have valid values.

Sampling issues. While the above computations can yield the correct (fractippixel addresses
in each input image, we still need to pay attention to sangpksues. For example, if the final
panorama has a lower resolution than the input images, Ipggrfg the input images is neces-
sary to avoid aliasing. These issues have been extensivglied in both the image processing
and computer graphics communities. The basic problem isttgpate the appropriate pre-filter,
which depends on the distance (and arrangement) betwegmoeing samples in a source image.
Various approximate solutions, such as MIP mapping (Wiibal983) or elliptically weighted
Gaussian averaging (Greene and Heckbert 1986) have beeloped in the graphics commu-
nity. For highest visual quality, a higher order (e.g., c)lmterpolator combined with a spatially
adaptive pre-filter may be necessary (Wah@l. 2001). Under certain conditions, it may also be
possible to produce images with a higher resolution thannpet images using a process called
super-resolutior{§7).
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Figure 9: Final composites computed by a variety of algorithms: (a@rage, (b) median, (c) feathered
average, (dp-normp =7, (e) Vornoi, (f) weighted ROD vertex cover with featherifw),graph cut seams,
(h) graph cut seams with Poisson blending.

6.2 Pixel selection and weighting

Once the source pixels have been mapped onto the final comsosface, we must still decide
how to blend them in order to create an attractive lookingopama. If all of the images are in
perfect registration and identically exposed, this is asygaoblem (any pixel or combination
will do). However, for real images, visible seams (due toaxpe differences), blurring (due to
mis-registration), or ghosting (due to moving objects) cacur.

Creating clean, pleasing looking panoramas involves bethdihg which pixels to use and
how to weight or blend them. The distinction between thesediages is a little fluid, since per-
pixel weighting can be though of as a combination of selectind blending. In this section, |
discuss spatially varying weighting, pixel selection (egdacement), and then more sophisticated
blending.

Feathering and center-weighting. The simplest way to create a final composite is to simply
take anaveragevalue at each pixel,

C(x) = Zwk(m)fk(m) /Z wi(x) , (145)
k k

wherel,(x) are thewarped(re-sampled) images and,(x) is 1 at valid pixels and 0 elsewhere.
On computer graphics hardware, this kind of summation capdr®rmed in araccumulation
buffer (using theA channel as the weight).

Simple averaging usually does not work very well, since sxpe differences, mis-registra-
tions, and scene movement are all very visible (Figure 3agpidly moving objects are the only
problem, taking anedianfilter (which is a kind of pixel selection operator) can oftea used
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to remove them (Irani and Anandan 1998) (Figure 9b). Comharsenter-weighting (discussed
below) andminimum likelihoodselection (Agarwalat al. 2004) can sometimes be used to retain
multiple copies of a moving object Note: Insert the figure with the moving snowboarder? |

A better approach to averaging is to weight pixels near théec®f the image more heavily and
to down-weight pixels near the edges. When an image has sotoetcegions, down-weighting
pixels near the edges of both cutouts and edges is prefer@hle can be done by computing a
distance majr grassfire transform
, (146)

wg(x) = ||arg n%}n{HyH | I.(x + y) is invalid }

where each valid pixel is tagged with its Euclidean distatacéhe nearest invalid pixel. The
Euclidean distance map can be efficiently computed usingagtgs raster algorithm (Danielsson
1980, Borgefors 1986). Weighted averaging with a distanae isioften calledeathering(Szeliski
and Shum 1997, Uyttendaed al. 2001), and does a reasonable job of blending over exposure
differences. However, blurring and ghosting can still belgems (Figure 9c¢). Note that weighted
averaging isnot the same as compositing the individual images with the dasger operation
(Porter and Duff 1984, Blinn 1994), even when using the weigliues (normalized to sum up
to one) asalpha(translucency) channels. This is because the over operatienuates the values
from more distant surfaces, and hence is not equivalent iatcdum.

One way to improve feathering is to raise the distance maypegalo some large power, i.e.,
to usewy (x) in (145). The weighted averages then become dominated biprher values, i.e.,
they act somewhat like g-norm The resulting composite can often provide a reasonahlledf&
between visible exposure differences and blur (Figure 9d).

In the limit asp — oo, only the pixel with the maximum distance value gets setkcte

C((IJ) = Il(w)(w), (147)

where
[ = arg max w(x) (148)

is thelabel assignmenor pixel selectiorfunction that selects which image to use at each pixel.
This hard pixel selection process produces a visibilitykrsensitive variant of the familiarornoi
diagram which assigns each pixel to the nearest image center ireti®&®odet al. 1997, Peleg
et al. 2000). The resulting composite, while useful for artistiagdance and in high-overlap
panoramasnfanifold mosaigstends to have very hard edges with noticeable seams when the
exposures vary (Figure 9e).

Xiong and Turkowski (1998) use this Vornoi idea (local maximof the grassfire transform)
to select seams for Laplacian pyramid blending (which isuised below). However, since the
seam selection is performed sequentially as new imagesidezlan, some artifacts can occur.
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Optimal seam selection. Computing the Vornoi diagram is one way to selectsbamsetween
regions where different images contribute to the final cositpo However, Vornoi images totally
ignore the local image structure underlying the seam.

A better approach is to place the seams in regions where thgesnagree, so that transitions
from one source to another are not visible. In this way, tigerthm avoids “cutting through”
moving objects, where a seam would look unnatural (Davis81L9%or a pair of images, this
process can be formulated as a simple dynamic programngtdrom one (short) edge of the
overlap region and ending at the other (Milgram 1975, Migra977, Davis 1998, Efros and
Freeman 2001).

When multiple images are being composited, the dynamicramgdea does not readily gen-
eralize. (For square texture tiles being composited sd@linEfros and Freeman (2001) run a
dynamic program along each of the four tile sides.)

To overcome this problem, Uyttendaeeal. (2001) observed that for well-registered images,
moving objects produce the most visible artifacts, nanralydlucent lookinghosts Their system
therefore decides which objects to keep, and which onesageerFirst, the algorithm compares
all overlapping input image pairs to determiregjions of differenc€dRODs) where the images
disagree. Next, a graph is constructed with the RODs ascesrind edges representing ROD
pairs that overlap in the final composit¢ Note: Add a figure here, taken from the papefSihce
the presence of an edge indicates an area of disagreemeitgvéregions) must be removed from
the final composite until no edge spans a pair of unremoveatesr The smallest such set can be
computed using @ertex coverlgorithm. Since several such covers may existegghted vertex
coveris used instead, where the vertex weights are computed byngugithe feather weights in
the ROD (Uyttendaelet al.2001). The algorithm therefore prefers removing regioas déine near
the edge of the image, which reduces the likelihood thatatbjerhich are only partially visible
will appear in the final composite. Once the required regafrdifference have been removed, the
final composite is created using a feathered blend (Figyre 9f

A different approach to pixel selection and seam placemastrecently proposed by Agarwala
et al. (2004). Their system computes the label assignment thathizets the sum of two objective
functions. The first is a per-pixehage objectivéhat determines which pixels are likely to produce
good composites,

xr

where Dy () is thedata penaltyassociated with choosing imagat pixelz. In their system,
users can select which pixels to use by “painting” over argenaith the desired object or appear-
ance, which set®)(x, () to a large value for all labelsother than the one selected by the user.
Alternatively, automated selection criteria can be usadhsasmaximum likelihoodhat prefers
pixels which occur repeatedly (for object removal),nanimum likelihoodor objects that occur
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infrequently (for greatest object retention).
The second term is seam objectivéhat penalizes differences in labelings between adjacent
images,

Cs= >, Suzumy(®,y) (150)
(T, Y)eN

whereSyz) . y)(, y) is the image-dependeimteraction penaltyor seam cosbf placing a seam
between pixelse andy, and \V is the set ofN, neighboring pixels. For example, the simple
color-based seam penalty used in (Kwadtal. 2003, Agarwalat al. 2004) can be written as

Suayi) (@, y) = | Ly (®) — Ly (@) + || Ty (y) — Ly (W) . (151)

More sophisticated seam penalties can also look at imagikegta or the presence of image edges
(Agarwalaet al.2004). Seam penalties are widely used in other computenvagplications such
as stereo matching (Boyket al. 2001) to give the labeling function itbherencer smoothness
The sum of the two objective functions is often called¥erkov Random FielMRF) energy,
since it arises as the negative log-likelihood of an MRFrthation (Geman and Geman 1984). For
general energy functions, finding the minimum can be NP-Baoykov et al. 2001). However,
a variety of approximate optimization techniques have lmmeloped over the years, including
simulated annealingGeman and Geman 1984), graph cuts (Boy&bal.2001), and loopy belief
propagation (Tappen and Freeman 2003). Both Kwetra. (2003) and Agarwalat al. (2004)
use graph cuts, which involves cycling through a set of samplexpansiorre-labelings, each of
which can be solved with a graph cut (max-flow) polynomiaidialgorithm (Boykowet al. 2001).
For the result shown in Figure 9g, Agarwalhal. (2004) use a large data penalty for invalid
pixels and O for valid pixels. Notice how the seam placemégarghm avoids regions of differ-
ences, including those that border the image and which méglat in cut off objects. Graph cuts
(Agarwalaet al. 2004) and vertex cover (Uyttendaedeal. 2001) often produce similar looking
results, although the former is significantly slower sirtaptimizes over all pixels, while the latter
is more sensitive to the thresholds used to determine regibdifference.

6.3 Blending

Once the seams have been placed and unwanted object remevstil] need to blend the images
to compensate for exposure differences and other misrakgits. The spatially-varying weighting
(feathering) previously discussed can often be used tonaglish this. However, it is difficult in
practice to achieve a pleasing balance between smoothirigwrequency exposure variations
and retaining sharp enough transitions to prevent blurg@itnough using a high exponent does
help).
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Laplacian pyramid blending. An attractive solution to this problem was developed by Bund
Adelson (1983). Instead of using a single transition widtHrequency-adaptive width is used
by creating a band-pass (Laplacian) pyramid and makingrmesition widths a function of the
pyramid level. The process operates as follows.

First, each warped image is converted into a band-passdtiapl) pyramid, which involves
smoothing each level with &:4(1, 4, 6, 4, 1) binomial kernel, subsampling the smoothed image by
a factor of 2, and subtracting the reconstructed (low-pasage from the original. This creates a
reversible, overcomplete representation of the imageasidgmvalid and edge pixels are filled with
neighboring values to make this process well defined.

Next, themask(valid pixel) image associated with each source image isaed into a low-
pass (Gaussian) pyramid. These blurred and subsampled mastme the weights used to per-
form a per-level feathered blend of the band-pass sourcgama

Finally, the composite image is reconstructed by intefjpodeand summing all of the pyramid
levels (band-pass images). The result of applying thismiddlending is shown in Figure ?[
Note: Need to add a figure here. ]

Gradient domain blending. An alternative approach to multi-badn image blending issidgrm

the operations in thgradient domainReconstructing images from their gradient fields has a long
history in computer vision (Horn 1986), starting origityallith work in brightness constancy
(Horn 1974), shape from shading (Horn and Brooks 1989), dradgonetric stereo (Woodham
1981). More recently, related ideas have been used for stemting images from their edges
(Elder and Golderg 2001), removing shadows from imagesg¥\2001), antone mappindiigh
dynamic range images by reducing the magnitude of imagesddgadients) (Fattadt al. 2002).

Pérezet al. (2003) showed how gradient domain reconstruction can bé tssdo seamless
object insertion in image editing applications. Rathemtlapying pixels, theyradientsof the
new image fragment are copied instead. The actual pixeksgdlor the copied image are then
computed by solving #oisson equationthat locally matches the gradients while obeying the
fixed Dirichlet (exact matching) conditions at the seam boundary. Pé&ret (2003) show that
this is equivalent to computing an additimeembrandanterpolant of the mismatch between the
source and destination images along the boundary. (The na@lnterpolant is known to have
nicer interpolation properties for arbitrary-shaped ¢ansts than frequency-domain interpolants
(Nielson 1993).) In prior work, Peleg (1981) also proposddilag a smooth function to force a
consistency along the seam curve.

Agarwalaet al. (2004) extended this idea to a multi-source formulationgrghit no longer
makes sense to talk of a destination image whose exact @kety must be matched at the seam.
Instead,eachsource image contributes its own gradient field, and thesBaigquation is solved
usingNeumanrboundary conditions, i.e., dropping any equations thablirespixels outside the
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boundary of the image.
Rather than solving the Poisson partial differential eipuat Agarwalaet al. (2004) directly
minimizevariational problem

. o7 2
min [VC/(@) - Viia (@) (152)

The discretized form of this equation is a set of gradienst@mt equations

Cl@+i)—C(x) = Ia)(x+1) — La(x) and (153)
Cle+y) —Clx) = I(x+]) — la (@), (154)

wherez = (1,0) andj = (0, 1) are unit vectors in the andy directions?® They then solve the

associated sparse least squares problem. Since this syEtnations is only defined up to an
additive constraint, Agarwalet al. (2004) ask the user to select the value of one pixel. In practi
a better choice might be to weakly bias the solution towaegsaducing the original color values.

In order to accelerate the solution of this sparse lineatesys(Fattalet al. 2002) use multi-
grid, whereas (Agarwalat al. 2004) have recently been using hierarchical basis pretiondd
conjugate gradient descent (Szeliski 1990). The resusiagn blending work very well in practice
(Figure 9h), although care must be taken when copying larg@ignt values near seams so that a
“double edge” is not introduced.

Copying gradients directly from the source images aftemsplacement is just one approach
to gradient domain blending. The paper by Legtral. (2004) examines several different variants
on this approach, which they c&lradient-domain Image STitchif{@IST). The techniques they
examine include feathering (blending) the gradients frammgource images, as well as using an
L1 norm in performing the reconstruction of the image frora gradient field, rather than using
an L2 norm as in (152). Their preferred technique is the Linoigation of a feathered (blended)
cost function on the original image gradients (which thely G&ST1-/;). While L1 optimization
using linear programming can be slow, a faster iterativeiametlased algorithm in a multigrid
framework works well in practice. Visual comparisons bedwéheir preferred approach and what
they calloptimal seam on the gradientghich is equivalent to Agarwalet al. (2004)’s approach)
show similar results, while significantly improving on pygral blending and feathering algorithms.

Exposure compensation. Pyramid and gradient domain blending can do a good job of eomp
sating for moderate amounts of exposure differences betwegges. However, when the exposure
differences become large, alternative approaches maydesseary.

Uyttendaeleet al. (2001) iteratively estimate a local correction betweerhesmurce image
and a blended composite. First, a block-based quadratisfenafunction is fit between each

20At seam locations, the right hand side is replaced by theageeof the gradients in the two source images.
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source image and an initial feathered composite. Nextsteariunctions are averaged with their
neighbors to get a smoother mapping, and per-pixel trafgfations are computed bgplining
between neighboring block values. Once each source imagbden smoothly adjusted, a new
feathered composite is computed, and the process is betedp@gpically 3 times). The results
in (Uyttendaelest al.2001) demonstrate that this does a better job of exposurp&oasation than
simple feathering, and can handle local variations in expodue to effects like lens vignetting.

High dynamic range imaging. A more principled approach to exposure compensation is to
estimate a singlhigh dynamic rang¢HDR) radiance map from of the differently exposed images
(Mann and Picard 1995, Debevec and Malik 1997, Mitsunagd\ayar 1999). All of these papers
assume that the input images were taken with a fixed camersenhirel values

Iy(x) = f(cxR(z); p) (155)

are the result of applying a parameterizediometric transfer functiory (R, p) to scaled radi-
ance valueg, R(x). The exposure values are either known (by experimental setup, or from a
camera’s EXIF tags), or are computed as part of the fittinggss.

The form of the parametric function differs in each of theapgrs. Mann and Picard (1995)
use a three-parametgfR) = o+ SR function, Debevec and Malik (1997) use a thin-plate cubic
spline, while Mitsunaga and Nayar (1999) use a low-ordér{ 10) polynomial for theinverseof
the transfer function.

To blend the estimated (noisy) radiance values into a finalpmsite, Mann and Picard (1995)
use a hat function (accentuating mid-tone pixels), DebawnecMalik (1997) use the derivative of
the response function, while Mitsunaga and Nayar (1999yope the signal-to-noise ratio (SNR),
which emphasizes both higher pixel values and larger gnéslia the transfer function.

Once aradiance map has been computed, it is usually negésshsplay it on a lower gamut
(i.e., 8-bit) screen or printer. A variety tdne mappingechniques have been developed for this
purpose, which involve either computing spatially varyingnsfer functions or reducing image
gradients to fit the the available dynamic range (Fattahl. 2002, Durand and Dorsey 2002,
Reinhardet al.2002)

Unfortunately, casually acquired images may not be pdyfeetjistered and may contain mov-
ing objects. Kanget al. (2003) present an algorithm that combines global registravith local
motion estimation (optic flow) to accurately align the imadpefore blending their radiance esti-
mates. Since the images may have widely different exposcaes must be taken when producing
the motion estimates, which must themselves be checkedfmistency to avoid the creation of
ghosts and object fragments.

Even this approach, however, may not work when the camernmigtaneously undergoing
large panning motions and exposure changes, which is a carpuurrence in casually acquired
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panoramas. Under such conditions, different parts of tregygrmay be seen at one or more expo-
sures. Devising a method to blend all of these differentssiwhile avoiding sharp transitions
and dealing with scene motion is a challenging open resgaoifiem.

In the long term, the need to compute high dynamic range ism&gen multiple exposures
may be eliminated by advances in camera sensor technolaya(nd Mitsunaga 2000, Kaeg
al. 2003). However, the need to blend such images and to tonehreaptb a pleasing final result
will likely remain.

7 Extensions and open issues

Multiple resolutions (zoom) and super-resolution (Kee¢ral. 1988, Irani and Peleg 1991, Cheese-
manet al. 1993, Mann and Picard 1994, Chiang and Boult 1996, Bastcld. 1996, Capel and
Zisserman 1998, Capel and Zisserman 2000, Capel and Zias@091, Smelyanskigt al.2000).

Video stitching (Irani and Anandan 1998); adding tempolaents (Sarnoff’s mosaics with
video (Lamplight?)); VideoBrush (Sawhney al. 1998); see also Salient Stills (Teodosio and
Bender 1993)) or (Massey & Bender, IBM Systems Journal 1996)

Peleg’s manifold mosaics (Peleg al. 2000) and stereo mosaics (where)? Strip mosaics for
artistic rendering and multi-plane pan (Woedl al. 1997). Multi-center-of-projection images
(Rademacher and Bishop 1998).

3-D parallax (Kumaet al. 1995).

Concentric mosaics (Shum and He 1999, Shum and Szeliski 19@®al. 2004b).

Other applications: document scanning with a mouse (Nakab. 1998); retinal image mo-
saics (Caret al. 2002).

Open issues. How to really make these things work automatically: repa@gtattern, matching
subsets, moving objects, parallax. Hard to get the last 3Mention internal test data suite,
shipping in product.)

Automated object removal: like intelligent PhotoMontagerfiantic stitching, photographer’s
assistant)

Large parallax: need to do 3D reconstruction. But, not fxssi no overlap in some regions
(MPPS gets around this with a hack). Ideally, want 70% oypendie inter-frame motions strongly
together (also for better blending). Video-rate camerals @n-board stitching may some day solve
this...

56



References

De Castro, E. and Morandi, C. (1987). Registration of traesl and rotated iimages using finite

fourier transformslEEE Transactions on Pattern Analysis and Machine Intelige PAMI-9(5),
700-703.

OpenGL ARB. (1997). OpenGL Reference Manual : The Official Reference Document to
OpenGL, Version 1.1Addison-Wesley, Reading, MA, 2 edition.

Agarwala, A.et al. (2004). Interactive digital photomontageCM Transactions on Graphigcs
23(3), 292-300.

Anandan, P. (1989). A computational framework and an allgorior the measurement of visual
motion. International Journal of Computer Visig8(3), 283—-310.

Ayache, N. (1989)Vision Séréoscopique et Perception MultisensorielleterEditions., Paris.

Badra, F., Qumsieh, A., and Dudek, G. (1998). Rotation amareog in image mosaicing. In

IEEE Workshop on Applications of Computer Vision (WACV, @8ges 50-55, IEEE Computer
Society, Princeton.

Baker, S. and Matthews, I. (2004). Lucas-kanade 20 yearsAounifying framework: Part

1. The guantity approximated, the warp update rule, and thdignt descent approximation.
International Journal of Computer Visiph6(3), 221-255.

Baker, Set al. (2003a).Lucas-Kanade 20 Years On: A Unifying Framework: ParfT2chnical
Report CMU-RI-TR-03-01, The Robotics Institute, Carnddigllon University.

Baker, Set al.. (2003b).Lucas-Kanade 20 Years On: A Unifying Framework: Parff@chnical
Report CMU-RI-TR-03-35, The Robotics Institute, Carnddigllon University.

Baker, Set al. (2004). Lucas-Kanade 20 Years On: A Unifying Framework: Partl&chnical
Report CMU-RI-TR-04-14, The Robotics Institute, Carnddigllon University.

Bartoli, A., Coquerelle, M., and Sturm, P. (2004). A framekvéor pencil-of-points structure-

from-motion. InEighth European Conference on Computer Vision (ECCV 2Qteges 28-40,
Springer-Verlag, Prague.

Bascle, B., Blake, A., and Zisserman, A. (1996). Motion detdhg and super-resolution from an

image sequence. lRrourth European Conference on Computer Vision (ECCV/'@apges 573—
582, Springer-Verlag, Cambridge, England.

57



Beis, J. S. and Lowe, D. G. (1997). Shape indexing using aqpaie nearest-neighbour search
in high-dimensional spaces. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’9/pages 1000-1006, San Juan, Puerto Rico.

Benosman, R. and Kang, S. B., editors. (200@3noramic Vision: Sensors, Theory, and Appli-
cations Springer, New York.

Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani, R93)L Hierarchical model-based
motion estimation. I'fecond European Conference on Computer Vision (ECC\Vf@@jes 237—
252, Springer-Verlag, Santa Margherita Liguere, Italy.

Black, M. J. and Anandan, P. (1996). The robust estimatianufiple motions: Parametric and
piecewise-smooth flow field€Computer Vision and Image Understandieg(1), 75-104.

Black, M. J. and Jepson, A. D. (1998). EigenTracking: robustiching and tracking of articulated
objects using a view-based representatioternational Journal of Computer Visio26(1), 63—
84.

Black, M. J. and Rangarajan, A. (1996). On the unificationird processes, outlier rejection,
and robust statistics with applications in early visidmternational Journal of Computer Vision
19(1) 57-91.

Blinn, J. F. (1994). Jim Blinn’s corner: Compositing, partTheory. IEEE Computer Graphics
and Applications14(5), 83-87.

Borgefors, G. (1986). Distance transformations in digit@ges. Computer Vision, Graphics
and Image Processing4(3), 227-248.

Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast appratenenergy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Inteltige 23(11) 1222-1239.

Brown, D. C. (1971). Close-range camera calibratiéthotogrammetric Engineering7(8),
855—-866.

Brown, L. G. (1992). A survey of image registration techrmguComputing Survey24(4),
325-376.

Brown, M. and Lowe, D. (2003). Recognizing panoramadiimh International Conference on
Computer Vision (ICCV’'03)pages 1218-1225, Nice, France.

Burt, P. J. and Adelson, E. H. (1983). A multiresolutionsphwith applications to image mosaics.
ACM Transactions on Graphig2(4), 217-236.

58



Can, A.et al. (2002). A feature-based, robust, hierarchical algoritomregistering pairs of
images of the curved human retin&EE Transactions on Pattern Analysis and Machine Intelli-
gence24(3), 347-364.

Capel, D. and Zisserman, A. (1998). Automated mosaicintp witper-resolution zoom. In
IEEE Computer Society Conference on Computer Vision antéffaRecognition (CVPR’99)
pages 885—-891, Santa Barbara.

Capel, D. and Zisserman, A. (2000). Super-resolution erdraent of text image sequences. In
Fifteenth International Conference on Pattern RecognititCPR’2000) pages 600—-605, IEEE
Computer Society Press, Barcelona, Spain.

Capel, D. and Zisserman, A. (2001). Super-resolution froaftiple views using learnt image
models. InIEEE Computer Society Conference on Computer Vision antéffaRecognition
(CVPR’2001) pages 627—-634, Kauai, Hawaii.

Cham, T. J. and Cipolla, R. (1998). A statistical framewarklbng-range feature matching in
uncalibrated image mosaicing. IBEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’98pages 442-447, Santa Barbara.

Cheeseman, P., Kanefsky, B., Hanson, R., and Stutz, J. (19e@er-Resolved Surface Recon-
struction From Multiple Images Technical Report FIA-93-02, NASA Ames Research Center,
Artificial Intelligence Branch.

Chen, S. E. (1995). QuickTime VR —an image-based approadghtal environment navigation.
Computer Graphics (SIGGRAPH95)29-38.

Chiang, M.-C. and Boult, T. E. (1996). Efficient image wapend super-resolution. IEEE
Workshop on Applications of Computer Vision (WACV, palges 56-61, IEEE Computer Society,
Sarasota.

Coorg, S. and Teller, S. (2000). Spherical mosaics witheqaains and dense correlatidnter-
national Journal of Computer Visio87(3), 259-273.

Cox, 1. J., Roy, S., and Hingorani, S. L. (1995). Dynamicdgsam warping of image pairs for
constant image brightness. IBEE International Conference on Image Processing (ICH,9
pages 366—369, IEEE Computer Society.

Danielsson, P. E. (1980). Euclidean distance mapp@mnputer Graphics and Image Process-
ing, 14(3), 227-248.

59



Davis, J. (1998). Mosaics of scenes with moving objectdEEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR '@8)ges 354-360, Santa Barbara.

Debevec, P. E. and Malik, J. (1997). Recovering high dynaamge radiance maps from pho-
tographs.Proceedings of SIGGRAPH 97369-378. ISBN 0-89791-896-7. Held in Los Angeles,
California.

Dellaert, F. and Collins, R. (1999). Fast image-based ingchky selective pixel integration. In
ICCV Workshop on Frame-Rate Visigrages 1-22.

Durand, F. and Dorsey, J. (2002). Fast bilateral filteringtiie display of high-dynamic-range
images.ACM Transactions on Graphics (TO&@1(3), 257—-266.

Efros, A. A. and Freeman, W. T. (2001). Image quilting fortter synthesis and transfer. In
Fiume, E., editorSIGGRAPH 2001, Computer Graphics Proceedjmumsges 341-346, ACM
Press / ACM SIGGRAPH.

El-Melegy, M. and Farag, A. (2003). Nonmetric lens distamtcalibration: Closed-form solu-
tions, robust estimation and model selection. Nimth International Conference on Computer
Vision (ICCV 2003)pages 554-559, Nice, France.

Elder, J. H. and Golderg, R. M. (2001). Image editing in thetoar domain.|EEE Transactions
on Pattern Analysis and Machine Intelligen@8(3), 291-296.

Fattal, R., Lischinski, D., and Werman, M. (2002). Gradidaiain high dynamic range com-
pression ACM Transactions on Graphics (TO@1(3), 249-256.

Fischler, M. A. and Bolles, R. C. (1981). Random sample cosise A paradigm for model
fitting with applications to image analysis and automatatoggaphy. Communications of the
ACM, 24(6), 381-395.

Forstner, W. (1986). A feature-based correspondenceitiigofor image matchingint.l Arch.
Photogrammetry & Remote Sensj2§(3), 150-166.

Forstner, W. (1994). A framework for low level feature exdtion. InThird European Conference
on Computer Vision (ECCV’'94ppages 383-394, Springer-Verlag, Stockholm, Sweden.

Freeman, W. T. and Adelson, E. H. (1991). The design and usteefable filters. |IEEE
Transactions on Pattern Analysis and Machine Intelligeri&£9), 891-906.

Fuh, C.-S. and Maragos, P. (1991). Motion displacementesion using an affine model for
image matchingOptical Engineering30(7), 881-887.

60



Geman, S. and Geman, D. (1984). Stochastic relaxation,sGitstribution, and the Bayesian
restoration of imagesEEE Transactions on Pattern Analysis and Machine Inteltige PAMI-
6(6), 721-741.

Gennert, M. A. (1988). Brightness-based stereo matchingekcond International Conference
on Computer Vision (ICCV’88pages 139-143, IEEE Computer Society Press, Tampa.

Golub, G. and Van Loan, C. F. (1996Matrix Computation, third edition The John Hopkins
University Press, Baltimore and London.

Greene, N. (1986). Environment mapping and other apptinatof world projections.IEEE
Computer Graphics and Applicatioy®(11), 21-29.

Greene, N. and Heckbert, P. (1986). Creating raster Omnimages from multiple perspective
views using the elliptical weighted average filtdEEE Computer Graphics and Applicatigns
6(6), 21-27.

Hager, G. D. and Belhumeur, P. N. (1998). Efficient regiooknag with parametric models of
geometry and illumination|EEE Transactions on Pattern Analysis and Machine Intelige
20(10) 1025-1039.

Hampel, F. Ret al. (1986). Robust Statistics : The Approach Based on Influence Furgtion
Wiley, New York.

Hannah, M. J. (1974)Computer Matching of Areas in Stereo Imagdé#.D. thesis, Stanford
University.

Hannah, M. J. (1988). Test results from SRI’s stereo systerimage Understanding Workshop
pages 740-744, Morgan Kaufmann Publishers, Cambridgesadhssetts.

Hansen, M., Anandan, P., Dana, K., van der Wal, G., and Burt(1P94). Real-time scene
stabilization and mosaic construction. IBEE Workshop on Applications of Computer Vision
(WACV’94) pages 54—-62, IEEE Computer Society, Sarasota.

Harris, C. and Stephens, M. J. (1988). A combined corner dge detector. IrAlvey Vision
Conferencepages 147-152.

Hartley, R. I. and Zisserman, A. (2004)ultiple View Geometry Cambridge University Press,
Cambridge, UK.

Horn, B. K. P. (1974). Determining lightness from an image&omputer Graphics and Image
Processing3(1), 277-299.

61



Horn, B. K. P. (1986)Robot Vision MIT Press, Cambridge, Massachusetts.

Horn, B. K. P. and Brooks, M. J. (1989K5hape from ShadingMIT Press, Cambridge, Mas-
sachusetts.

Horn, B. K. P. and Schunck, B. G. (1981). Determining optft@ak. Artificial Intelligence 17,
185-203.

Huber, P. J. (1981)Robust StatisticsJohn Wiley & Sons, New York.

Huffel, S. v. and Vandewalle, J. (1991)he Total Least Squares Problem: Computational Aspects
and Analysis Society for Industrial and Applied Mathematics, Philalliep

Irani, M. and Anandan, P. (1998). Video indexing based onaitagpresentation$roceedings
of the IEEE 86(5), 905-921.

Irani, M. and Peleg, S. (1991). Improving resolution by imaggistration.Graphical Models
and Image Processing3(3), 231-239.

Irani, M., Hsu, S., and Anandan, P. (1995). Video compress&ing mosaic representations.
Signal Processing: Image Communicati@n529-552.

Jia, J. and Tang, C.-K. (2003). Image registration with gl@nd local luminance alignment. In
Ninth International Conference on Computer Vision (ICC\02f)pages 156-163, Nice, France.

Jurie, F. and Dhome, M. (2002). Hyperplane approximationdmplate matchinglEEE Trans-
actions on Pattern Analysis and Machine Intelligeriz4(7), 996—-1000.

Kadir, T., Zisserman, A., and Brady, M. (2004). An affine ingat salient region detector.
In Eighth European Conference on Computer Vision (ECCV 200dges 228—-241, Springer-
Verlag, Prague.

Kang, S. B. (2001). Radial distortion snak#&SICE Trans. Inf. & Syst.E84-D(12) 1603-1611.

Kang, S. B.et al.. (2003). High dynamic range videdACM Transactions on Graphic22(3),
319-325.

Kang, S. B., Szeliski, R., and Uyttendaele, M. (2008g¢amless Stitching using Multi-Perspective
Plane SweepTechnical Report MSR-TR-2004-48, Microsoft Research.

Keren, D., Peleg, S., and Brada, R. (1988). Image sequer@ameement using sub-pixel dis-
placements. IREEE Computer Society Conference on Computer Vision anefPaRecognition
(CVPR’88) pages 742—-746, IEEE Computer Society Press, Ann Arbohilgio.

62



Kuglin, C. D. and Hines, D. C. (1975). The phase correlatroage alignment method. IEEE
1975 Conference on Cybernetics and Sogieges 163—-165, New York.

Kumar, R., Anandan, P., and Hanna, K. (1994). Direct regogéshape from multiple views: A
parallax based approach. Tivelfth International Conference on Pattern Recogniti@RR’'94),
pages 685—-688, IEEE Computer Society Press, Jerusaleml, Isr

Kumar, R., Anandan, P., Irani, M., Bergen, J., and Hanna,109%). Representation of scenes
from collections of images. IEEE Workshop on Representations of Visual Scereages 10-17,
Cambridge, Massachusetts.

Kwatra, V.et al.. (2003). Graphcut textures: Image and video synthesigugiaph cuts ACM
Transactions on Graphi¢c22(3), 277-286.

Le Gall, D. (1991). MPEG: A video compression standard fottimedia applicationsCommu-
nications of the ACM34(4), 44-58.

Lee, M.-C.et al. (1997). A layered video object coding system using sprmiie @fine motion
model. IEEE Transactions on Circuits and Systems for Video TedyypV (1), 130-145.

Levin, A., Zomet, A., Peleg, S., and Weiss, Y. (2004). Seamlmage stitching in the gradient
domain. InEighth European Conference on Computer Vision (ECCV 200dges 377-389,
Springer-Verlag, Prague.

Li, Y. et al. (2004a). Lazy snappindACM Transactions on Graphic83(3), 303-308.

Li, Y. etal. (2004b). Stereo reconstruction from multiperspectiveogpamasIEEE Transactions
on Pattern Analysis and Machine Intelligen@é(1), 44-62.

Loop, C. and Zhang, Z. (1999). Computing rectifying homgpdpias for stereo vision. In
IEEE Computer Society Conference on Computer Vision antkfPaRecognition (CVPR’99)

pages 125-131, Fort Collins.

Lowe, D. G. (2004). Distinctive image features from scaleariant keypoints.International
Journal of Computer Visigr60(2), 91-110.

Lucas, B. D. and Kanade, T. (1981). An iterative image regjiisin technique with an application
in stereo vision. IrBeventh International Joint Conference on Atrtificial Ihggnce (IJCAI-81)
pages 674—-679, Vancouver.

Mann, S. and Picard, R. W. (1994). Virtual bellows: Conging high-quality images from
video. InFirst IEEE International Conference on Image Processir@R-94) pages 363-367,

Austin.

63



Mann, S. and Picard, R. W. (1995). On being ‘undigital’ witithl cameras: Extending dynamic
range by combining differently exposed picturesI3&T's 48th Annual Conferengpages 422—
428, Society for Imaging Science and Technology, Washmd®o C.

Matas, Jet al. (2004). Robust wide baseline stereo from maximally stalzsteemal regions.
Image and Vision Computing2(10) 761-767.

Matthies, L. H., Szeliski, R., and Kanade, T. (1989). Kalridar-based algorithms for estimat-
ing depth from image sequencésternational Journal of Computer Visio8, 209-236.

McLauchlan, P. F. and Jaenicke, A. (2002). Image mosaiciggusequential bundle adjustment.
Image and Vision Computing0(9-10) 751-759.

Meehan, J. (1990Panoramic Photographywatson-Guptill.

Mikolajczyk, K. and Schmid, C. (2003). A performance evélma of local descriptors. In
IEEE Computer Society Conference on Computer Vision angfalRecognition (CVPR’2003)
pages 257-263, Madison, WI.

Mikolajczyk, K. and Schmid, C. (2004). Scale & affine invarianterest point detectordnter-
national Journal of Computer VisioB0(1), 63—86.

Milgram, D. L. (1975). Computer methods for creating photsaics. IEEE Transactions on
ComputersC-24(11) 1113-1119.

Milgram, D. L. (1977). Adaptive techniques for photomog&aig. IEEE Transactions on Com-
puters C-26(11) 1175-1180.

Mitsunaga, T. and Nayar, S. K. (1999). Radiometric selfbration. InIEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recogni@®/PR’'99) pages 374-380, Fort
Collins.

Nakao, T., Kashitani, A., and Kaneyoshi, A. (1998). Scagrandocument with a small cam-
era attached to a mouse. IIBEE Workshop on Applications of Computer Vision (WACV,98)
pages 63—-68, IEEE Computer Society, Princeton.

Nayar, S. K. and Mitsunaga, T. (2000). High dynamic rangegimgt Spatially varying pixel
exposures. INEEE Computer Society Conference on Computer Vision angPaRecognition
(CVPR’2000) pages 472-479, Hilton Head Island.

Nene, S. and Nayar, S. K. (1997). A simple algorithm for nsareighbor search in high
dimensionslEEE Transactions on Pattern Analysis and Machine Intellige 19(9), 989-1003.

64



Nielson, G. M. (1993). Scattered data modelinBEE Computer Graphics and Applicatigns
13(1), 60-70.

Okutomi, M. and Kanade, T. (1993). A multiple baseline stei&EE Transactions on Pattern
Analysis and Machine Intelligenc#5(4), 353—-363.

Oppenheim, A. V., Schafer, R. W., and Buck, J. R. (199B)screte-Time Signal Processing
Pearson Education, 2nd edition.

Peleg, S. (1981). Elimination of seams from photomosasmputer Vision, Graphics, and
Image Processindl6, 1206—-1210.

Peleg, Set al. (2000). Mosaicing on adaptive manifoldEEE Transactions on Pattern Analysis
and Machine Intelligence2(10) 1144-1154.

Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson inegigggng. ACM Transactions on
Graphics 22(3), 313-318.

Porter, T. and Duff, T. (1984). Compositing digital imag€amputer Graphics (SIGGRAPH’84)
18(3), 253-259.

Quam, L. H. (1984). Hierarchical warp stereo. linage Understanding Workshopages 149—
155, Science Applications International Corporation, Ngfkeans.

Rademacher, P. and Bishop, G. (1998). Multiple-centgrrofection images. IrComputer
Graphics Proceedings, Annual Conference Sepages 199-206, ACM SIGGRAPH, Proc. SIG-
GRAPH’98 (Orlando).

Rehg, J. and Witkin, A. (1991). Visual tracking with defortioa models. InIEEE Interna-
tional Conference on Robotics and Automatipages 844—-850, IEEE Computer Society Press,
Sacramento.

Reinhard, Eet al.. (2002). Photographic tone reproduction for digital imnag&CM Transactions
on Graphics (TOG)21(3), 267-276.

Rother, C., Kolmogorov, V., and Blake, A. (2004). “GrabCuthteractive foreground extraction
using iterated graph cut&CM Transactions on Graphic23(3), 309-314.

Rousseeuw, P. J. (1984). Least median of squares regmesdsional of the American Statistical
Association79, 871-880.

Rousseeuw, P. J. and Leroy, A. M. (198Rpbust Regression and Outlier Detectidiiley, New
York.

65



Samet, H. (1989)The Design and Analysis of Spatial Data Structurddgldison-Wesley, Read-
ing, Massachusetts.

Sawhney, H. S. (1994). 3D geometry from planar parallaxlEEBE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR'Bdges 929-934, IEEE Computer
Society, Seattle.

Sawhney, H. S. and Ayer, S. (1996). Compact representatadeos through dominant multiple
motion estimationlEEE Transactions on Pattern Analysis and Machine Inteltige 18(8), 814—
830.

Sawhney, H. S. and Kumar, R. (1999). True multi-image alignhand its application to mosaic-
ing and lens distortion correctiodnEEE Transactions on Pattern Analysis and Machine Intelli-
gence21(3), 235-243.

Sawhney, H. Set al. (1998). Videobrush: Experiences with consumer video mcoga In
IEEE Workshop on Applications of Computer Vision (WACV, @8ges 56—-62, IEEE Computer
Society, Princeton.

Schaffalitzky, F. and Zisserman, A. (2002). Multi-view rolaing for unordered image sets, or
“How do | organize my holiday snaps?”. Beventh European Conference on Computer Vision
(ECCV 2002)pages 414-431, Springer-Verlag, Copenhagen.

Scharstein, D. and Szeliski, R. (2002). A taxonomy and etadn of dense two-frame stereo
correspondence algorithmisiternational Journal of Computer Visioa7(1), 7-42.

Schmid, C., Mohr, R., and Bauckhage, C. (2000). Evaluatfonterest point detectordnterna-
tional Journal of Computer Visiqr37(2), 151-172.

Shakhnarovich, G., Viola, P., and Darrell, T. (2003). Fasigpestimation with parameter sensitive
hashing. InNinth International Conference on Computer Vision (ICC\02)) pages 750-757,
Nice, France.

Shi, J. and Tomasi, C. (1994). Good features to trackEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR;988ges 593-600, IEEE Computer Society,
Seattle.

Shoemake, K. (1985). Animating rotation with quaterniomves. Computer Graphics (SIG-
GRAPH’85) 19(3), 245-254.

Shum, H.-Y. and He, L.-W. (1999). Rendering with conceninicsaics. InNSIGGRAPH'99
pages 299-306, ACM SIGGRAPH, Los Angeles.

66



Shum, H.-Y. and Szeliski, R. (1997Panoramic Image Mosaicinglechnical Report MSR-TR-
97-23, Microsoft Research.

Shum, H.-Y. and Szeliski, R. (1999). Stereo reconstrudtiom multiperspective panoramas. In
Seventh International Conference on Computer Vision (8@ pages 14-21, Kerkyra, Greece.

Shum, H.-Y. and Szeliski, R. (2000). Construction of pamacamosaics with global and local
alignment. International Journal of Computer Visio6(2), 101-130. Erratum published July
2002, 48(2):151-152.

Simoncelli, E. P., Adelson, E. H., and Heeger, D. J. (19919b&bility distributions of optic flow.
In IEEE Computer Society Conference on Computer Vision anefPaRecognition (CVPR’91)
pages 310-315, IEEE Computer Society Press, Maui, Hawaii.

Slama, C. C., editor. (1980Manual of PhotogrammetryAmerican Society of Photogrammetry,
Falls Church, Virginia, fourth edition.

Smelyanskiy, V. N., Cheeseman, P., Maluf, D. A., and MoifsD. (2000). Bayesian super-
resolved surface reconstruction from images.I[HEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’2008ages 375-382, Hilton Head Island.

Stein, G. (1997). Lens distortion calibration using poiatrespondences. IMEEEE Computer
Society Conference on Computer Vision and Pattern RecogniCVPR’97) pages 602-608,
San Juan, Puerto Rico.

Stewart, C. V. (1999). Robust parameter estimation in cderpusion. SIAM Reviews41(3),
513-537.

Szeliski, R. (1989).Bayesian Modeling of Uncertainty in Low-Level Visidkluwer Academic
Publishers, Boston.

Szeliski, R. (1990). Fast surface interpolation usingdranical basis functiondEEE Transac-
tions on Pattern Analysis and Machine Intelligent2(6), 513-528.

Szeliski, R. (1994). Image mosaicing for tele-reality aggtions. INIEEE Workshop on Appli-
cations of Computer Vision (WACV’'94)ages 44-53, IEEE Computer Society, Sarasota.

Szeliski, R. (1996). Video mosaics for virtual environmentEEE Computer Graphics and
Applications 16(2), 22—-30.

Szeliski, R. and Coughlan, J. (1994). Hierarchical spbased image registration. IBEE Com-
puter Society Conference on Computer Vision and Patterodteton (CVPR’94) pages 194—
201, IEEE Computer Society, Seattle.

67



Szeliski, R. and Coughlan, J. (1997). Spline-based imagjstration. International Journal of
Computer Vision22(3), 199-218.

Szeliski, R. and Kang, S. B. (1994). Recovering 3D shape aotiomfrom image streams
using nonlinear least squarekurnal of Visual Communication and Image Representab@h),
10-28.

Szeliski, R. and Kang, S. B. (1995). Direct methods for visegne reconstruction. feEE
Workshop on Representations of Visual Scepages 26—33, Cambridge, Massachusetts.

Szeliski, R. and Shum, H.-Y. (1997). Creating full view pearaic image mosaics and texture-
mapped modelsComputer Graphics (SIGGRAPH97 Proceeding®51-258.

Tappen, M. F. and Freeman, W. T. (2003). Comparison of graghwith belief propagation for
stereo, using identical MRF parameters.Nimth International Conference on Computer Vision
(ICCV 2003) pages 900-907, Nice, France.

Teodosio, L. and Bender, W. (1993). Salient video stillsntéat and context preserved. ACM
Multimedia 93 pages 39—-46, Anaheim, California.

Tian, Q. and Huhns, M. N. (1986). Algorithms for subpixel igtgation. Computer Vision,
Graphics, and Image Processifigh, 220-233.

Triggs, B. (2004). Detecting keypoints with stable positiorientation, and scale under illumina-
tion changes. litighth European Conference on Computer Vision (ECCV 2@tes 100-113,
Springer-Verlag, Prague.

Triggs, B.et al. (1999). Bundle adjustment — a modern synthesisintarnational Workshop
on Vision Algorithmspages 298-372, Springer, Kerkyra, Greece.

Triggs, B., Zisserman, A., and Szeliski, R., editors. (200Wision Algorithms: Theory and
Practice Springer, Berlin. Proceedings of the International Whd¢s on Vision Algorithms,
Corfu, Greece, September 1999.

Tuytelaars, T. and Van Gool, L. (2004). Matching widely seped views based on affine invariant
regions.International Journal of Computer Visiph9(1), 61-85.

Uyttendaele, Met al.. (2004). Image-based interactive exploration of reallvenvironments.
IEEE Computer Graphics and Applicatiqrizi(3).

Uyttendaele, M., Eden, A., and Szeliski, R. (2001). Eliniimg ghosting and exposure arti-
facts in image mosaics. MtEE Computer Society Conference on Computer Vision anefPat
Recognition (CVPR’2001pages 509-516, Kauai, Hawaii.

68



Wang, L., Kang, S. B., Szeliski, R., and Shum, H.-Y. (2001pti@al texture map reconstruction

from multiple views. InIEEE Computer Society Conference on Computer Vision antkfPat
Recognition (CVPR’2001pages 347-354, Kauai, Hawaii.

Watt, A. (1995).3D Computer GraphicsAddison-Wesley, third edition.

Weber, J. and Malik, J. (1995). Robust computation of opfloa in a multi-scale differential
framework.International Journal of Computer Visioh4(1), 67-81.

Weiss, Y. (2001). Deriving intrinsic images from image sewnges. InEighth International
Conference on Computer Vision (ICCV 200dages 7-14, Vancouver, Canada.

Williams, L. (1983). Pyramidal parametric€omputer Graphicsl7(3), 1-11.

Wood, D. N.et al. (1997). Multiperspective panoramas for cel animation. Computer

Graphics Proceedings, Annual Conference Sepages 243-250, ACM SIGGRAPH, Proc. SIG-
GRAPH’97 (Los Angeles).

Woodham, R. J. (1981). Analysing images of curved surfaéesficial Intelligence 17, 117—
140.

Xiong, Y. and Turkowski, K. (1997). Creating image-based M&ng a self-calibrating fish-

eye lens. INEEE Computer Society Conference on Computer Vision antkiffaRecognition
(CVPR’97) pages 237-243, San Juan, Puerto Rico.

Xiong, Y. and Turkowski, K. (1998). Registration, caliboat and blending in creating high qual-

ity panoramas. IhfEEE Workshop on Applications of Computer Vision (WACV, §8pes 69-74,
IEEE Computer Society, Princeton.

Zabih, R. and Woodfill, J. (1994). Non-parametric local sfanms for computing visual cor-

respondence. Iithird European Conference on Computer Vision (ECCV,$8ges 151-158,
Springer-Verlag, Stockholm, Sweden.

Zoghlami, |., Faugeras, O., and Deriche, R. (1997). Usingnggric corners to build a 2D

mosaic from a set of images. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’9/pages 420—-425, San Juan, Puerto Rico.

69



