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1 Introduction

[ Note: Change /date command above once final draft is ready... ]

Algorithms for aligning images and stitching them into seamless photo-mosaics are among the
oldest and most widely used in computer vision. Frame-rate image alignment is used in every

camcorder that has an “image stabilization” feature. Imagestitching algorithms create the high-
resolution photo-mosaics used to produce today’s digital maps and satellite photos. They also

come “out of the box” with every digital camera currently being sold, and can be used to create
beautiful ultra wide-angle panoramas.

An early example of a widely-used image registration algorithm is the patch-based transla-

tional alignment (optical flow) technique developed by Lucas and Kanade (1981). Variants of this
algorithm are used in almost all motion-compensated video compression schemes such as MPEG

and H.263 (Le Gall 1991). Similar parametric motion estimation algorithms have found a wide
variety of applications, including video summarization (Bergenet al.1992, Teodosio and Bender

1993, Kumaret al. 1995, Irani and Anandan 1998), video stabilization (Hansenet al. 1994), and
video compression (Iraniet al.1995, Leeet al.1997).

In the photogrammetry community, more manually intensive methods based on surveyedground

control pointsor manually registeredtie pointshave long been used to register aerial photos into
large-scale photo-mosaics (Slama 1980). One of the key advances in this community was the de-

velopment ofbundle adjustmentalgorithms that could simultaneously solve for the locations of
all of the camera positions, thus yielding globally consistent solutions (Triggset al. 1999). One

of the recurring problems in creating photo-mosaics is the elimination of visible seams, for which
a variety of techniques have been developed over the years (Milgram 1975, Milgram 1977, Peleg

1981, Davis 1998, Agarwalaet al.2004)
In film photography, special cameras were developed at the turn of the century to take ultra

wide angle panoramas, often by exposing the film through a vertical slit as the camera rotated on

its axis (Meehan 1990). In the mid-1990s, image alignment techniques started being applied to the
construction of wide-angle seamless panoramas from regular hand-held cameras (Mann and Picard

1994, Szeliski 1994, Chen 1995, Szeliski 1996). More recentwork in this area has addressed the
need to compute globally consistent alignments (Szeliski and Shum 1997, Sawhney and Kumar

1999, Shum and Szeliski 2000), the removal of “ghosts” due toparallax and object movement
(Davis 1998, Shum and Szeliski 2000, Uyttendaeleet al.2001, Agarwalaet al.2004), and dealing

with varying exposures (Mann and Picard 1994, Uyttendaeleet al.2001, Agarwalaet al.2004). (A
collection of some of these papers can be found in (Benosman and Kang 2001).) These techniques
have spawned a large number of commercial stitching products (Chen 1995, Sawhneyet al.1998),

for which reviews and comparison can be found on the Web.
While most of the above techniques work by directly minimizing pixel-to-pixel dissimilarities,
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a different class of algorithms works by extracting a sparseset offeaturesand then matching these
to each other (Zoghlamiet al.1997, Capel and Zisserman 1998, Cham and Cipolla 1998, Badraet

al. 1998, McLauchlan and Jaenicke 2002, Brown and Lowe 2003). Feature-based approaches have
the advantage of being more robust against scene movement and are potentially faster, if imple-

mented the right way. Their biggest advantage, however, is the ability to “recognize panoramas”,
i.e., to automatically discover the adjacency (overlap) relationships among an unordered set of im-
ages, which makes them ideally suited for fully automated stitching of panoramas taken by casual

users (Brown and Lowe 2003).
What, then, are the essential problems in image alignment and stitching? For image align-

ment, we must first determine the appropriate mathematical model relating pixel coordinates in
one image to pixel coordinates in another. Section 2 reviewsthese basicmotion models. Next, we

must somehow estimate the correct alignments relating various pairs (or collections) of images.
Section 3 discusses howdirect pixel-to-pixel comparisons combined with gradient descent (and

other optimization techniques) can be used to estimate these parameters. Section 4 discusses how
distinctivefeaturescan be found in each image and then efficiently matched to rapidly establish
correspondences between pairs of images. When multiple images exist in a panorama, techniques

must be developed to compute a globally consistent set of alignments and to efficiently discover
which images overlap one another. These issues are discussed in Section 5.

For image stitching, we must first choose a final compositing surface onto which to warp and
place all of the aligned images (Section 6). We also need to develop algorithms to seamlessly blend

overlapping images, even in the presence of parallax, lens distortion, scene motion, and exposure
differences (Section 6). In the last section of this survey,I discuss additional applications of image
stitching and open research problems.

2 Motion models

Before we can register and align images, we need to establishthe mathematical relationships that
map pixel coordinates from one image to another. A variety ofsuchparametric motion models

are possible, from simple 2D transforms, to planar perspective models, 3D camera rotations, lens
distortions, and the mapping to non-planar (e.g., cylindrical) surfaces (Szeliski 1996).

To facilitate working with images at different resolutions, we adopt a variant of thenormalized

device coordinatesused in computer graphics (Watt 1995, OpenGL ARB 1997). For atypical

(rectangular) image or video frame, we let the pixel coordinates range from[−1, 1] along the longer
axis, and[−a, a] along the shorter, wherea is the inverse of theaspect ratio.1 For an image with

1In computer graphics, it is usual to have both axes range from[−1, 1], but this requires the use of two different
focal lengths for the vertical and horizontal dimensions, and makes it more awkward to handle mixed portrait and
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widthW and heightH, the equations mapping integer pixel coordinatesx = (x, y) to normalized
device coordinatesx = (x, y) are

x =
2x−W

S
and y =

2y −H
S

where S = max(W,H). (1)

Note that if we work with images in apyramid, we need to halve theS value after each decimation

step rather than recomputing it frommax(W,H), since the(W,H) values may get rounded or trun-
cated in an unpredictable manner. For the rest of this paper,we use normalized device coordinates

when refering to pixel coordinates.

2.1 2D (planar) motions

Having defined our coordinate system, we can now describe howcoordinates are transformed. The
simplest transformations occur in the 2D plane and are illustrated in Figure 1.

Translation. 2D translations can be written asx′ = x + t or

x′ =
[

I t
]

x̃ (2)

whereI is the (2 × 2) identity matrix andx̃ = (x, y, 1) is thehomogeneousor projective2D

coordinate.

Rotation + translation. This transformation is also known as2D rigid body motionor the2D

Euclidean transformation(since Euclidean distances are preserved). It can be written asx′ =

Rx + t or
x′ =

[

R t
]

x̃ (3)

where

R =





cos θ − sin θ

sin θ cos θ



 (4)

is an orthonormal rotation matrix withRRT = I and|R| = 1.

Scaled rotation. Also known as thesimilarity transform, this transform can be expressed as
x′ = sRx + t wheres is an arbitrary scale factor. It can also be written as

x′ =
[

sR t
]

x̃ =





a −b tx
b a ty



 x̃, (5)

where we no longer require thata2 + b2 = 1. The similarity transform preserves angles between
lines.

landscape mode images.
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Euclidean affine

projective

translation

Figure 1: Basic set of 2D planar transformations

Affine. The affine transform is written asx′ = Ax̃, whereA is an arbitrary2× 3 matrix, i.e.,

x′ =





a00 a01 a02

a10 a11 a12



 x̃. (6)

Parallel lines remain parallel under affine transformations.

Projective. This transform, also known as aperspective transformor homography, operates on
homogeneous coordinatesx̃ andx̃′,

x̃′ ∼ H̃x̃, (7)

where∼ denotes equality up to scale and̃H is an arbitrary3 × 3 matrix. Note thatH̃ is itself
homogeneous, i.e., it is only defined up to a scale. The resulting homogeneous coordinatẽx′ must

be normalized in order to obtain an inhomogeneous resultx′, i.e.,

x′ =
h00x+ h01y + h02

h20x+ h21y + h22

and y′ =
h10x+ h11y + h12

h20x+ h21y + h22

. (8)

Perspective transformations preserve straight lines.

Hierarchy of 2D transformations The preceding set of transformations are illustrated in Fig-
ure 1 and summarized in Table 1. The easiest way to think of these is as a set of (potentially

restricted)3 × 3 matrices operating on 2D homogeneous coordinate vectors. Hartley and Zisser-
man (2004) contains a more detailed description of the hierarchy of 2D planar transformations.

The above transformations form a nested set ofgroups, i.e., they are closed under composition

and have an inverse that is a member of the same group. Each (simpler) group is a subset of the
more complex group below it.

2.2 3D transformations

A similar nested hierarchy exists for 3D coordinate transformations that can be denoted using
4 × 4 transformation matrices, with 3D equivalents to translation, rigid body (Euclidean) and
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Name Matrix # D.O.F. Preserves: Icon

translation
[

I t
]

2×3
2 orientation+ · · ·

rigid (Euclidean)
[

R t
]

2×3
3 lengths+ · · · ��

��

SS
SS

similarity
[

sR t
]

2×3
4 angles+ · · · �

�
S
S

affine
[

A
]

2×3
6 parallelism+ · · · �� ��

projective
[

H̃
]

3×3
8 straight lines `̀

  

Table 1: Hierarchy of 2D coordinate transformations. The2× 3 matrices are extended with a third[0T 1]

row to form a full3× 3 matrix for homogeneous coordinate transformations.

affine transformations, and homographies (sometimes called collineations) (Hartley and Zisserman
2004).

The process ofcentral projectionmaps 3D coordinatesp = (X, Y, Z) to 2D coordinatesx =

(x, y, 1) through apinholeat the camera origin onto a 2D projection plane a distancef along thez
axis,

x = f
X

Z
, y = f

Y

Z
, (9)

as shown in Figure 2. The relationship between the (unit-less) focal lengthf and the field of view
θ is given by

f−1 = tan
θ

2
or θ = 2 tan−1 1

f
. (10)

To convert the focal lengthf to its more commonly used 35mm equivalent, multiply the above
number by 17.5 (the half-width of a 35mm photo negative frame). To convert it to pixel coordi-

nates, multiply it byS/2 (half-width for a landscape photo).
In the computer graphics literature, perspective projection is often written as a permutation

matrix that permutes the last two elements of homogeneous 4-vectorp = (x, y, z, 1),

x̃ ∼















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















p, (11)

followed by a scaling and translation into screen andz-buffercoordinates.

In computer vision, it is traditional to drop the z-buffer values, since these cannot be sensed in
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W/2

fθ
/2

Figure 2: Central projection, showing the relationship between the 3D and 2D coordinatesp andx, as well

as the relationship between the focal lengthf W and the field of viewθ. [ Note: Re-generate the figures

from Formation-figs1.vsd. Colin says I need a better figure here... ]

an image and to write

x̃ ∼









f 0 0 0

0 f 0 0

0 0 1 0









p =
[

K 0

]

p (12)

whereK = diag(f, f, 1) is called theintrinsic calibrationmatrix.2 This matrix can be replaced by
a more general upper-triangular matrixK that accounts for non-square pixels, skew, and a variable

optic center location (Hartley and Zisserman 2004). However, in practice, the simple focal length
scaling used above provides high-quality results when stitching images from regular cameras.

In this paper, I prefer to use a4× 4 projection matrix, P ,

x̃ ∼




K 0

0
T 1



 p = Pp, (13)

which maps the homogeneous 4-vectorp = (X, Y, Z, 1) to a special kind of homogemeousscreen

vector x̃ = (x, y, 1, z). This allows me to denote the upper-left3 × 3 portion of the projection
matrix P asK (making it compatible with the computer vision literature), while not dropping

altogether the inverse screen depth informationd (which is alo sometimes called thedisparityd

(Okutomi and Kanade 1993)). This latter quantity is necessary to reason about mappings between

images of a 3D scene, as described below.
What happens when we take two images of a 3D scene from different camera positions and/or

orientations? A 3D pointp gets mapped to an image coordinatex̃0 in camera 0 through the
combination of a 3D rigid-body (Euclidean) motionE0,

x0 =





R0 t0

0
T 1



 p = E0p, (14)

2The last column ofK usually contains the optical center(cx, cy), but this can be set to zero if we use normalized
device coordinates.
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and a perspective projectionP 0,
x̃0 ∼ P 0E0p. (15)

Assuming that we know the z-buffer valuez0 for a pixel in one image, we can map it back to the

3D coordinatep using
p ∼ E−1

0 P−1
0 x̃0 (16)

and then project it into another image yielding

x̃1 ∼ P 1E1p = P 1E1E
−1
0 P−1

0 x̃0 = M 10x̃0. (17)

Unfortunately, we do not usually have access to the depth coordinates of pixels in a regular
photographic image. However, for aplanar scene, we can replace the last row ofP 0 in (13) with

a generalplane equation, n̂0 · p + d0 that maps points on the plane toz0 = 0 values. Then, if we
setz0 = 0, we can ignore the last column ofM 10 in (17) and also its last row, since we do not care

about the final z-buffer depth. The mapping equation (17) thus reduces to

x̃1 ∼ H̃10x̃0, (18)

whereH̃10 is a general3 × 3 homography matrix and̃x1 andx̃0 are now 2D homogeneous co-
ordinates (i.e., 3-vectors) (Szeliski 1994, Szeliski 1996).3 This justifies the use of the 8-parameter

homography as a general alignment model for mosaics of planar scenes (Mann and Picard 1994,
Szeliski 1996).4

Rotational panoramas The more interesting case is when the camera undergoes pure rotation
(which is equivalent to assuming all points are very far fromthe camera). Settingt0 = t1 = 0, we
get the simplified3× 3 homography

H̃10 = K1R1R
−1
0 K−1

0 , (19)

whereKk = diag(fk, fk, 1) is the simplified camera intrinsic matrix (Szeliski 1996). This can also
be re-written as









x1

y1

f1









∼ R01









x0

y0

f0









, (20)

3For points off the reference plane, we get out-of-planeparallaxmotion, which is why this representation is often
called theplane plus parallaxrepresentation (Sawhney 1994, Szeliski and Coughlan 1994,Kumaret al.1994).

4Note that for a single pair of images, the fact that a 3D plane is being viewed by a set of rigid cameras does not
reduce the total number of degrees of freedom. However, for alarge collection of images taken of a planar surface
(e.g., a whiteboard) from a calibrated camera, we could reduce the number of degrees of freedom per image from 8 to
6 by assuming that the plane is at a canonical location (e.g.,z = 1).
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which elucidates the simplicity of the mapping equations and makes all of the motion parameters
explicit. Thus, instead of the general 8-parameter homography relating a pair of images, we get the

3-, 4-, or 5-parameter3D rotationmotion models corresponding to the cases where the focal length
f is known, fixed, or variable (Szeliski and Shum 1997). Estimating the 3D rotation matrix (and

optionally, focal length) associated with each image is intrinsically more stable than estimating a
full 8-d.o.f. homography, which makes this the method of choice for large-scale consumer-level
image stitching algorithms (Szeliski and Shum 1997, Shum and Szeliski 2000, Brown and Lowe

2003).

Parameterizing 3D rotations. If we are going to represent panoramas using a combination of
rotations and focal lengths, what is the best way to represent the rotations themselves? The choices

include:

• the full 3× 3 matrixR, which has to be re-orthonormalized after each update;

• Euler angles(α, β, γ), which are a bad idea because you cannot always move smoothlyfrom
one rotation to another;

• the axis/angle (or exponential twist) representation, which represents the rotation by an axis
n̂ and a rotation angleθ, or the product of the two,

~ω = θn̂ = (ωx, ωy, ωz), (21)

which has the minimial number of 3 parameters, but is still not unique;

• and unit quaternions, which represent rotations with unit 4-vectors,

q = (x, y, z, w) = (v, w) = (sin
θ

2
n̂, cos

θ

2
), (22)

wheren̂ andθ are the rotation axis and angle.

The rotation matrix corresponding to a rotation byθ around an axiŝn is

R(n̂, θ) = I + sin θ[n̂]× + (1− cos θ)[n̂]2×, (23)

which is known asRodriguez’s formula(Ayache 1989), and[n̂]× is the matrix form of the cross-

product operator,

[n̂]× =









0 −n̂z n̂y

n̂z 0 −n̂x

−n̂y n̂x 0









. (24)
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For small (infinitessimal) rotations, the rotation reducesto

R(~ω) ≈ I + θ[n̂]× = I + [~ω]×. (25)

Using the trigonometric identitiessin θ = 2 sin θ
2
cos θ

2
and(1− cos θ) = 2 sin2 θ

2
, Rodriguez’s

formula can be converted to

R(q) = I + sin θ[n̂]× + (1− cos θ)[n̂]2×

= I + 2w[v]× + 2[v]2×. (26)

This suggests a quick way to rotate a vector by a quaternion using a series of cross products,

scalings, and additions. From this, we can derive the commonly used formula forR(q) as a
function of(x, y, z, w),

R(q) =









1− 2(y2 + z2) 2(xy − zw) 2(xz + yw)

2(xy + zw) 1− 2(x2 + z2) 2(yz − xw)

2(xz − yw) 2(yz + xw) 1− 2(x2 + y2)









. (27)

[ Note: Colin says this formula is inconsistent with formulas he found on the Web; he promised

to send some links (follow up). ]The diagonal terms can be made more symmetrical by replacing
1− 2(y2 + z2) with (x2 + w2 − y2 − z2), etc.

Between the axis/angle represenation and quaternions, I generally prefer unit quaternions, be-
cause they possess a nice algebra that makes it easy to take products (compositions), ratios (change

in rotation), and linear interpolations (Shoemake 1985). For example, the product of two quater-
nionsq0 = (v0, w0) andq1 = (v1, w1) is given by

q2 = q0q1 = (v0 × v1 + w0v1 + w1v0, w0w1 − v0 · v1), (28)

with the property thatR(q2) = R(q0)R(q1). (Note that quaternion multiplication isnot commu-
tative, just as 3D rotations and matrix multiplications arenot.) Taking the inverse of a quaternion

is also easy: just flip the sign ofv or w (but not both!). However, when it comes time to update
rotation estimates, I use anincrementalform of the axis/angle representation (25), as described in

§4.3.

2.3 Cylindrical and spherical coordinates

An alternative to using homographies or 3D motions to align images is to first warp the images
into cylindrical coordinates and to then use a pure translational model to align them (Chen 1995).

Unfortunately, this only works if the images are all taken with a level camera or with a known tilt
angle.

9



(a) (b)

Figure 3: Projection from 3D to cylindrical and spherical coordinates.

[ Note: Need something better, just a placeholder for now...]

Assume for now that the camera is in its canonical position, i.e., its rotation matrix is the

identity so that the optic axis is aligned with thez axis and they axis is aligned vertically. The 3D
ray corresponding to an(x, y) pixel is therefore(x, y, f).

We wish to project this image onto acylindrical surfaceof unit radius (Szeliski 1994). Points
on this surface are parameterized by an angleθ and a heighth, with the 3D cylindrical coordinates

corresponding to(θ, h) given by

(sin θ, h, cos θ) ∝ (x, y, f), (29)

as shown in Figure 3a. From this correspondence, we can compute the formula for thewarpedor
mappedcoordinates (Szeliski and Shum 1997),

x′ = sθ = s tan−1 x

f
, (30)

y′ = sh = s
y√

x2 + f 2
, (31)

wheres is an arbitrary scaling factor (sometimes called theradiusof the cylinder) that can be set
to s = f to minimize the distortion (scaling) near the center of the image.5 The inverse of this

mapping equation is given by

x = f tan θ = f tan
x′

s
, (32)

y = h
√

x2 + f 2 =
y′

s
f

√

1 + tan2 x′/s = f
y′

s
sec

x′

s
. (33)

Images can also be projected onto aspherical surface(Szeliski and Shum 1997), which is use-
ful if the final panorama includes a full sphere or hemisphereof views, instead of just a cylindrical

5The scale can also be set to a larger or smaller value for the final compositing surface, depending on the desired
output panorama resolution—see§6.
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(a) (b)

Figure 4: An example of a cylindrical panorama: (a) two cylindricallywarped images related by a hori-

zontal translation; (b) part of a cylindrical panorama composited from a sequence of images.

[ Note: Find the original images from the above paper... ]

strip. In this case, the sphere is parameterized by two angles (θ, φ), with 3D spherical coordinates
given by

(sin θ cosφ, sinφ, cos θ cosφ) ∝ (x, y, f), (34)

as shown in Figure 3b. The correspondence between coordinates is now given by (Szeliski and
Shum 1997)

x′ = sθ = s tan−1 x

f
, (35)

y′ = sφ = s tan−1 y√
x2 + f 2

, (36)

while the inverse is given by

x = f tan θ = f tan
x′

s
, (37)

y =
√

x2 + f 2 tanφ = tan
y′

s
f

√

1 + tan2 x′/s = f tan
y′

s
sec

x′

s
. (38)

Note that it may be simpler to generate a scaled(x, y, z) direction from (34) followed by a per-

spective division byz and a scaling byf .
Cylindrical image stitching algorithms are most commonly used when the camera is known to

be level and only rotating around its vertical axis (Chen 1995). Under these conditions, images at
different rotations are related by a pure horizontal translation.6 This makes it attractive as an initial

class project in an introductory computer vision course, since the full complexity of the perspective
alignment algorithm (§3.5 & §4.3) can be avoided. Figure 4 shows how two cylindrically warped
images from a leveled rotational panorama are related by a pure translation (Szeliski and Shum

1997).

6Small vertical tilts can sometimes be compensated for with avertical translation.
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Figure 5: An example of a spherical panorama constructed from 54 photographs.

[ Note: Find the original images from the above paper... ]

Professional panoramic photographers sometimes also use apan-tilt head that makes it easy to

control the tilt and to stop at specificdetentsin the rotation angle. This not only ensures a uniform
coverage of the visual field with a desired amount of image overlap, but also makes it possible

to stitch the images using cylindrical or spherical coordinates and pure translations. In this case,
pixel coordinates(x, y, f) must first be rotated using the known tilt and panning angles before

being projected into cylindrical or spherical coordinates(Chen 1995). Having a roughly known
panning angle also makes it easier to compute the alignment,since the rough relative positioning
of all the input images is known ahead of time, enabling a reduced search range for alignment.

Figure 5 shows a full 3D rotational panorama unwrapped onto the surface of a sphere (Szeliski and
Shum 1997).

One final coordinate mapping worth mentioning is thepolar mapping where the north pole lies
along the optic axis rather than the vertical axis,

(cos θ sinφ, sin θ sinφ, cosφ) = s (x, y, z). (39)

In this case, the mapping equations become

x′ = sφ cos θ = s
x

r
tan−1 r

z
, (40)

y′ = sφ sin θ = s
y

r
tan−1 r

z
, (41)

wherer =
√
x2 + y2 is theradial distancein the (x, y) plane andsφ plays a similar role in the

(x′, y′) plane. This mapping provides an attractive visualization surface for certain kinds of wide-
angle panoramas and is also a good model for the distortion induced byfisheyes lenses, as discussed

below. Note how for small values of(x, y), the mapping equations reduces tox′ ≈ sx/z, which
suggests thats plays a role similar to the focal lengthf . Figure 6 shows the full 3D rotational

panorama shown in Figure 5 unwrapped onto a polar compositing surface.
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Figure 6: An example of a 3D rotational panorama mapped using a polar mapping.

[ Note: Need to write the code to generate this... ]

(a) (b) (c)

Figure 7: Examples of radial lens distortion: (a) barrel, (b) pincushion, and (c) fisheye.

[ Note: Run VideoMosaic to generate (a) and (b), grab any one of your fisheyes for (c). ]

2.4 Lens distortions

When images are taken with wide-angle lenses, it is often necessary to modellens distortions

such asradial distortion. The radial distortion model says that coordinates in the observed images
are displaced away (barrel distortion) or towards (pincushiondistortion) the image center by an

amount proportional to their radial distance (Figure 7a–b). The simplest radial distortion models
use low-order polynomials, e.g.,

x′ = x(1 + κ1r
2 + κ2r

4)

y′ = y(1 + κ1r
2 + κ2r

4), (42)

wherer2 = x2 + y2 andκ1 andκ2 are called theradial distortion parameters(Brown 1971, Slama

1980).7 More complex distortion models also includetangential (decentering) distortions(Slama
1980), but these are usually not necessary for consumer-level stitching.

A variety of techniques can be used to estimate the radial distortion parameters for a given

lens. One of the simplest and most useful is to take an image ofa scene with a lot of straight lines,
especially lines aligned with and near the edges of the image. The radial distortion parameters can

then be adjusted until all of the lines in the image are straight, which is commonly called theplumb

line method(Brown 1971, Kang 2001, El-Melegy and Farag 2003).

Another approach is to use several overlapping images and tocombine the estimation of the ra-
dial distortion parameters together with the image alignment process. Sawhney and Kumar (1999)
use a hierarchy of motion models (translation, affine, projective) in a coarse-to-fine strategy cou-

pled with a quadratic radial distortion correction term. They use direct (intensity-based) mini-
mization to compute the alignment. Stein (1997) uses a feature-based approach combined with

a general 3D motion model (and quadratic radial distortion), which requires more matches than a
parallax-free rotational panorama but is potentially moregeneral.

Fisheye lenses require a different model than traditional polynomial models of radial distortion
(Figure 7c). Instead, fisheye lenses behave, to a first approximation, asequi-distanceprojectors

7Sometimes the relationship betweenx andx′ is expressed the other way around, i.e., using primed (final)coordi-
nates on the right-hand side.
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of angles away from the optic axis (Xiong and Turkowski 1997), which is the same as thepolar

projectiondescribed by equations (39-41). Xiong and Turkowski (1997)describe how this model

can be extended with the addition of an extra quadratic correction in φ, and how the unknown
parameters (center of projection, scaling factors, etc.) can be estimated from a set of overlapping

fisheye images using a direct (intensity-based) non-linearminimization algorithm.

3 Direct (pixel-based) alignment

Once we have chosen a suitable motion model to describe the alignment between a pair of images,

we need to devise some method to estimate its parameters. Oneapproach is to shift or warp the
images relative to each other and to look at how much the pixels agree. Approaches that use
pixel-to-pixel matching are often calleddirect methods, as opposed to thefeature-based methods

described in the next section.
To use a direct method, a suitableerror metric must first be chosen to compare the images.

Once this has been established, a suitablesearchtechnique must be devised. The simplest tech-
nique is to exhaustively try all possible alignments, i.e.,to do afull search. In practice, this may

be too slow, sohierarchicalcoarse-to-fine techniques based on image pyramids have beendevel-
oped. Alternatively, Fourier transforms can be used to speed up the computation. To get sub-pixel
precision in the alignment,incrementalmethods based on a Taylor series expansion of the image

function are often used. These can also be applied toparametric motion models. Each of these
techniques is described in more detail below.

3.1 Error metrics

The simplest way to establish an alignment between two images is to shift one image relative to
the other. Given atemplateimageI0(x) sampled at discrete pixel locations{xi = (xi, yi)}, we
wish to find where it is located in imageI1(x). A least-squares solution to this problem is to find

the minimum of thesum of squared differences(SSD) function

ESSD(u) =
∑

i

[I1(xi + u)− I0(xi)]
2 =

∑

i

e2i , (43)

whereu = (u, v) is thedisplacementandei = I1(xi + u) − I0(xi) is called theresidual error

(or thedisplaced frame differencein the video coding literature).8 (We ignore for the moment the
possibility that parts ofI0 may lie outside the boundaries ofI1 or be otherwise not visible.)

8The usual justification for using least squares is that it is the optimal estimate with respect to Gaussian noise. See
the discussion below on robust alternatives.
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In general, the displacementu can be fractional, so a suitable interpolation function must be
applied to imageI1(x). In practice, a bilinear interpolant is often used, but bi-cubic interpolation

may yield slightly better results. Color images can be processed by summing differences across all
three color channels, although it is also possible to first transform the images into a different color

space or to only use the luminance (which is often done in video encoders).

Robust error metrics We can make the above error metric more robust to outliers by replacing
the squared error terms with a robust functionρ(ei) (Huber 1981, Hampelet al. 1986, Black and

Anandan 1996, Stewart 1999) to obtain

ESRD(u) =
∑

i

ρ(I1(xi + u)− I0(xi)) =
∑

i

ρ(ei). (44)

The robust normρ(e) is a function that grows less quickly than the quadratic penalty associated
with least squares. One such function, sometimes used in motion estimation for video coding

because of its speed, is thesum of absolute differences(SAD) metric, i.e.,

ESAD(u) =
∑

i

|I1(xi + u)− I0(xi)| =
∑

i

|ei|. (45)

However, since this function is not differentiable at the origin, it is not well suited to gradient-

descent approaches such as the ones presented in§3.4.
Instead, a smoothly varying function that is quadratic for small values but grows more slowly

away from the origin is often used. Black and Rangarajan (1996) discuss a variety of such func-
tions, including theGeman-McClurefunction,

ρGM(x) =
x2

1 + x2/a2
, (46)

wherea is a constant that can be thought of as anoutlier threshold. An appropriate value for the

threshold can itself the derived using robust statistics (Huber 1981, Hampelet al.1986, Rousseeuw
and Leroy 1987), e.g., by computing themedian of absolute differences, MAD = medi|ei|, and

multiplying by 1.4 to obtain a robust estimate of the standard deviation of the non-outlier noise
process.

Spatially varying weights. The error metrics above ignore that fact that for a given alignment,

some of the pixels being compared may lie outside the original image boundaries. Furthermore,
we may want to partially or completely downweight the contributions of certain pixels. For ex-
ample, we may want to selectively “erase” some parts of an image from consideration, e.g., when

stitching a mosaic where unwanted foreground objects have been cut out. For applications such as
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background stabilization, we may want to downweight the middle part of the image, which often
contains independently moving objects being tracked by thecamera.

All of these tasks can be accomplished by associating a spatially varying per-pixel weight
value with each of the two images being matched. The error metric then become the weighted (or

windowed) SSD function,

EWSSD(u) =
∑

i

w0(x)w1(xi + u)[I1(xi + u)− I0(xi)]
2, (47)

where the weighting functionsw0 andw1 are zero outside the valid ranges of the images.
If a large range of potential motions is allowed, the above metric can have a bias towards

smaller overlap solutions. To counteract this bias, the windowed SSD score can be divided by the
overlap area

A =
∑

i

w0(x)w1(xi + u) (48)

to compute aper-pixel(or mean) squared pixel error. The square root of this quantity is theroot

mean squaredintensity error
RMS =

√

EWSSD/A (49)

often seen reported in comparative studies.

Bias and gain (exposure differences). Often, the two images being aligned were not taken with

the same exposure. A simple model of linear (affine) intensity variation between the two images is
thebias and gainmodel,

I1(x + u) = (1 + α)I0(x) + β, (50)

whereβ is thebiasandα is thegain (Lucas and Kanade 1981, Gennert 1988, Fuh and Maragos

1991, Bakeret al.2003b). The least squares formulation then becomes

EBG(u) =
∑

i

[I1(xi + u)− (1 + α)I0(xi)− β]2 =
∑

i

[αI0(xi) + β − ei]
2. (51)

Rather than taking a simple squared difference between corresponding patches, it becomes neces-

sary to perform alinear regression, which is somewhat more costly. Note that for color images,
it may be necessary to estimate a different bias and gain for each color channel to compensate for

the automaticcolor correctionperformed by some digital cameras.
A more general (spatially-varying non-parametric) model of intensity variation, which is com-

puted as part of the registration process, is presented in (Jia and Tang 2003). This can be useful

for dealing with local variations such as thevignettingcaused by wide-angle lenses. It is also
possible to pre-process the images before comparing their values, e.g., by using band-pass filtered

images (Burt and Adelson 1983, Bergenet al. 1992) or using other local transformations such as
histograms or rank transforms (Coxet al.1995, Zabih and Woodfill 1994).
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Correlation. An alternative to taking intensity differences is to perform correlation, i.e., to max-
imize theproduct(or cross-correlation) of the two aligned images,

ECC(u) =
∑

i

I0(xi)I1(xi + u). (52)

At first glance, this may appear to make bias and gain modelingunnecessary, since the images will
prefer to line up regardless of their relative scales and offsets. However, this is actually not true. If

a very bright patch exists inI1(x), the maximum product may actually lie in that area.
For this reason,normalized cross-correlationis more commonly used,

ENCC(u) =

∑

i[I0(xi)− I0] [I1(xi + u)− I1]
√

∑

i[I0(xi)− I0]2[I1(xi + u)− I1]2
, (53)

where

I0 =
1

N

∑

i

I0(xi) and (54)

I1 =
1

N

∑

i

I1(xi + u) (55)

are themean imagesof the corresponding patches andN is the number of pixels in the patch. The
normalized cross-correlation score is always guaranteed to be in the range[−1, 1], which makes it

easier to handle in some higher-level applications (such asdeciding which patches truly match).
Note, however, that the NCC score is undefined if either of thetwo patches has zero variance (and

in fact, its performance degrades for noisy low-contrast regions).

3.2 Hierarchical motion estimation

Now that we have defined an alignment cost function to optimize, how do we find its minimum?
The simplest solution is to do afull searchover some range of shifts, using either integer or sub-

pixel steps. This is often the approach used forblock matchingin motion compensated video

compression, where a range of possible motions (say±16 pixels) is explored.9

To accelerate this search process,hierarchical motion estimationis often used, where an image
pyramid is first constructed, and a search over a smaller number of discrete pixels (corresponding to

the same range of motion) is first performed at coarser levels(Quam 1984, Anandan 1989, Bergen
et al. 1992). The motion estimate from one level of the pyramid can then be used to initialize a

9In stereo matching, an explicit search over all possible disparities (i.e., aplane sweep) is almost always performed,
since the number of search hypotheses is much smaller due to the 1D nature of the potential displacements (Scharstein
and Szeliski 2002).
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smallerlocal search at the next finer level. While this is not guaranteed toproduce the same result
as full search, it usually works almost as well and is much faster.

More formally, let
I

(l)
k (xj)← Ĩ

(l−1)
k (2xj) (56)

be thedecimatedimage at levell obtained by subsampling (downsampling) a smoothed (pre-
filtered) version of the image at levell−1. At the coarsest level, we search for the best displacement
u(l) that minimizes the difference between imagesI

(l)
0 andI(l)

1 . This is usually done using a full

search over some range of displacementsu(l) ∈ 2−l[−S, S]2 (whereS is the desiredsearch range

at the finest (original) resolution level), optionally followed by the incremental refinement step

described in§3.4.
Once a suitable motion vector has been estimated, it is used to predicta likely displacement

û(l−1) ← 2u(l) (57)

for the next finer level.10 The search over displacements is then repeated at the finer level over

a much narrower range of displacements, sayû(l−1) ± 1, again optionally combined with an in-
cremental refinement step (Anandan 1989). A nice description of the whole process, extended to

parametric motion estimation (§3.5), can be found in (Bergenet al.1992).

3.3 Fourier-based alignment

When the search range corresponds to a significant fraction of the larger image (as is the case in
image stitching), the hierarchical approach may not work that well, since it is often not possible

to coarsen the representation too much before significant features get blurred away. In this case, a
Fourier-based approach may be preferable.

Fourier-based alignment relies on the fact that the Fouriertransform of a shifted signal has the
same magnitude as the original signal but linearly varying phase, i.e.,

F {I1(x + u)} = F {I1(x)} e−2πju·f = I1(f)e−2πju·f , (58)

wheref is the vector-valued frequency of the Fourier transform andwe use calligraphic notation

I1(f) = F {I1(x)} to denote the Fourier transform of a signal (Oppenheimet al.1999, p. 57).
Another useful property of Fourier transforms is that convolution in the spatial domain corre-

sponds to multiplication in the Fourier domain (Oppenheimet al. 1999, p. 58). Thus, the Fourier

10This doubling of displacements is only necessary if displacements are defined in integerpixel coordinates, which
is the usual case in the literature, e.g., (Bergenet al.1992). Ifnormalized device coordinates(§2) are used instead, the
displacements (and search ranges) need not change from level to level, although the step sizes will need to be adjusted
(to keep search steps of roughly one pixel).
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transform of the cross-correlation functionECC can be written as

F {ECC(u)} = F
{

∑

i

I0(xi)I1(xi + u)

}

= F {I0(u)∗I1(u)} = I0(f )I∗1 (f), (59)

where
h(u) = f(u)∗g(u) =

∑

i

f(xi)g(xi + u) (60)

is thecorrelation function, i.e., the convolution of one signal with the reverse of the other, and
I∗1 (f ) is thecomplex conjugateof I1(f). (This is because convolution is defined as the summation
of one signal with the reverse of the other (Oppenheimet al.1999).)

Thus, to efficiently evaluateECC over the range of all possible values ofu, we take the Fourier
transforms of both imagesI0(x) andI1(x), multiply both transforms together (after conjugating

the second one), and take the inverse transform of the result. The Fast Fourier Transform algorithm
can compute the transform of anN ×M image in O(NM logNM) operations (Oppenheimet al.

1999). This can be significantly faster than the O(N2M2) operations required to do a full search
when the full range of image overlaps is considered.

While Fourier-based convolution is often used to accelerate the computation of image correla-

tions, it can also be used to accelerate the sum of squared differences function (and its variants) as
well. Consider the SSD formula given in (43). Its Fourier transform can be written as

F {ESSD(u)} = F
{

∑

i

[I1(xi + u)− I0(xi)]
2

}

= δ(f)
∑

i

[I2
0 (xi) + I2

1 (xi)]− 2I0(f )I∗1 (f).

(61)

Thus, the SSD function can be computed by taking twice the correlation function and subtracting
it from the sum of the energies in the two images.

Windowed correlation. Unfortunately, the Fourier convolution theorem only applies when the

summation overxi is performed overall the pixels in both images, using a circular shift of the
image when accessing pixels outside the original boundaries. While this is acceptable for small

shifts and comparably sized images, it makes no sense when the images overlap by a small amount
or one image is a small subset of the other.

In that case, the cross-correlation function should be replaced with awindowed(weighted)
cross-correlation function,

EWCC(u) =
∑

i

w0(xi)I0(xi) w1(xi + u)I1(xi + u), (62)

= [w0(x)I0(x)]∗[w1(x)I1(x)] (63)

where the weighting functionsw0 andw1 are zero outside the valid ranges of the images, and both
images are padded so that circular shifts return 0 values outside the original image boundaries.
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An even more interesting case is the computation of theweightedSSD function introduced in
(47),

EWSSD(u) =
∑

i

w0(x)w1(xi + u)[I1(xi + u)− I0(xi)]
2 (64)

= w0(x)∗[w1(x)I2
1 (x)] + [w0(x)I2

0 (x)]∗w1(x)− 2[w0(x)I0(x)]∗[w1(x)I1(x)].

The Fourier transform of the resulting expression is therefore

F {EWSSD(u)} =W0(f)S∗
1 (f ) + S0(f)W∗

1 (f )− 2Î0(f)Î∗1 (f ), (65)

where
W0 = F{w0(x)},
Î0 = F{w0(x)I0(x)},
S0 = F{w0(x)I2

0 (x)}, and

W1 = F{w1(x)},
Î1 = F{w1(x)I1(x)},
S1 = F{w1(x)I2

1 (x)}
(66)

are the Fourier transforms of the weighting functions and theweightedoriginal and squared image
signals. Thus, for the cost of a few additional image multiplies and Fourier transforms, the correct

windowed SSD function can be computed. (To my knowledge, I have not seen this formulation
written down before, but I have been teaching it to students for several years now.)

The same kind of derivation can be applied to the bias-gain corrected sum of squared difference

functionEBG. Again, Fourier transforms can be used to efficiently compute all the correlations
needed to perform the linear regression in the bias and gain parameters in order to estimate the

exposure-compensated difference for each potential shift.

Phase correlation. A variant of regular correlation (59) that is sometimes usedfor motion esti-
mation isphase correlation(Kuglin and Hines 1975, Brown 1992). Here, the spectrum of the two

signals being matched iswhitenedby dividing each per-frequency product in (59) by the magni-
tudes of the Fourier transforms,

F {EPC(u)} =
I0(f)I∗1 (f )

‖I0(f)‖‖I1(f )‖ (67)

before taking the final inverse Fourier transform. In the case of noiseless signals with perfect

(cyclic) shift, we haveI1(x + u) = I0(x), and hence from (58) we obtain

F {I1(x + u)} = I1(f )e−2πju·f = I0(f ) and

F {EPC(u)} = e−2πju·f . (68)

The output of phase correlation (under ideal conditions) istherefore a single spike (impulse) lo-

cated at the correct value ofu, which (in principle) makes it easier to find the correct estimate.
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(a) (b) (c)

Figure 8: An image (a) and its polar (b) and log-polar (c) transforms.

[ Note: Need to write the code to generate these... ]

Phase correlation has a reputation in some quarters of outperforming regular correlation, but

this behavior depends on the characteristics of the signalsand noise. If the original images are
contaminated by noise in a narrow frequency band (e.g., low-frequency noise or peaked frequency

“hum”), the whitening process effectively de-emphasizes the noise in these regions. However, if
the original signals have very low signal-to-noise ratio atsome frequencies (say, two blurry or low-

textured images with lots of high-frequency noise), the whitening process can actually decrease
performance. To my knowledge, no systematic comparison of the two approaches (together with

other Fourier-based techniques such as windowed and/or bias-gain corrected differencing) has been
performed, so this is an interesting area for further exploration.

Rotations and scale. While Fourier-based alignment is mostly used to estimate translational

shifts between images, it can, under certain limited conditions, also be used to estimate in-plane
rotations and scales. Consider two images that are relatedpurelyby rotation, i.e.,

I1(R̂x) = I0(x). (69)

If we re-sample the images intopolar coordinates(Figure 8b),

Ĩ0(r, θ) = I0(r cos θ, r sin θ) and Ĩ1(r, θ) = I1(r cos θ, r sin θ), (70)

we obtain

Ĩ1(r, θ + θ̂) = Ĩ0(r, θ). (71)

The desired rotation can then be estimated using an FFT shift-based technique.[ Note: Show an

image and its polar transform. ]

If the two images are also related by a scale,

I1(e
ŝR̂x) = I0(x), (72)

we can re-sample intolog-polar coordinates(Figure 8c),

Ĩ0(s, θ) = I0(e
s cos θ, es sin θ) and Ĩ1(s, θ) = I1(e

s cos θ, es sin θ), (73)

to obtain

Ĩ1(s+ ŝ, θ + θ̂) = I0(s, θ). (74)
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In this case, care must be taken to choose a suitable range ofs values that reasonably samples the
original image. [ Note: Show an image and its log-polar transform, along witha rotated/scaled

image and its transforms. ]

For images that are also translated by a small amount,

I1(e
ŝR̂x + t) = I0(x), (75)

De Castro and Morandi (1987) proposed an ingenious solutionthat uses several steps to estimate

the unknown parameters. First, both images are converted tothe Fourier domain, and only the
magnitudes of the transformed images are retained. In principle, the Fourier magnitude images

are insensitive to translations in the image plane (although the usual caveats about border effects
apply). Next, the two magnitude images are aligned in rotation and scale using the polar or log-
polar representations. Once rotation and scale are estimated, one of the images can be de-rotated

and scaled, and a regular translational algorithm can be applied to estimate the translational shift.
Unfortunately, this trick only applies when the images havelarge overlap (small translational

motion). For more general motion of patches or images, the parametric motion estimator described
in §3.5 or the feature-based approaches described in§4 need to be used.

3.4 Incremental refinement

The techniques described up till now can estimate translational alignment to the nearest pixel (or

potentially fractional pixel if smaller search steps are used). In general, image stabilization and
stitching applications require much higher accuracies to obtain acceptable results.

To obtain bettersub-pixelestimates, we can use one of several techniques (Tian and Huhns
1986). One possibility is to evaluate several discrete (integer or fractional) values of(u, v) around

the best value found so far and tointerpolatethe matching score to find an analytic minimum.
A more commonly used approach, first proposed by Lucas and Kanade (1981), is to dogradient

descenton the SSD energy function (43), using a Taylor Series expansion of the image function,

ELK−SSD(u + ∆u) =
∑

i

[I1(xi + u + ∆u)− I0(xi)]
2

≈
∑

i

[I1(xi + u) + J1(xi + u)∆u− I0(xi)]
2 (76)

=
∑

i

[J1(xi + u)∆u + ei]
2, (77)

where

J1(xi + u) = ∇I1(xi + u) = (
∂I1
∂x

,
∂I1
∂y

)(xi + u) (78)
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is theimage gradientatxi + u.11

The above least squares problem can be minimizing by solvingthe associatednormal equations

(Golub and Van Loan 1996),
A∆u = b (79)

where
A =

∑

i

JT
1 (xi + u)J1(xi + u) (80)

and
b = −

∑

i

eiJ
T
1 (xi + u) (81)

are called theHessianandgradient-weighted residual vector, respectively. These matrices are also

often written as

A =





∑

I2
x

∑

IxIy
∑

IxIy
∑

I2
y



 and b = −




∑

IxIt
∑

IyIt



 , (82)

where the subscripts inIx andIy denote spatial derivatives, andIt is called thetemporal derivative,
which makes sense if we are computing instantaneous velocity in a video sequence.

The gradients required forJ1(xi + u) can be evaluated at the same time as the image warps
required to estimateI1(xi +u), and in fact are often computed as a side-product of image interpo-
lation. If efficiency is a concern, these gradients can be replaced by the gradients in thetemplate

image,
J1(xi + u) ≈ J0(x), (83)

since near the correct alignment, the template and displaced target images should look similar.
This has the advantage of allowing the pre-computation of the Hessian and Jacobian images, which

can result in significant computational savings (Hager and Belhumeur 1998, Baker and Matthews
2004).

The effectiveness of the above incremental update rule relies on the quality of the Taylor series

approximation. When far away from the true displacement (say 1-2 pixels), several iterations
may be needed. (It is possible, however, to estimate a value for J1 using a least-squares fit to

a series of larger displacements in order to increase the range of convergence (Jurie and Dhome
2002).) When started in the vicinity of the correct solution, only a few iterations usually suffice.

A commonly used stopping criterion is to monitor the magnitude of the displacement correction
‖u‖ and to stop when it drops below a certain threshold (say1/10th of a pixel). For larger motions,

it is usual to combine the incremental update rule with a hierarchical coarse-to-fine search strategy,
as described in§3.2.

11We follow the convention, commonly used in robotics and in (Baker and Matthews 2004), that derivatives with
respect to (column) vectors result in row vectors, so that fewer transposes are needed in the formulas.

23



Conditioning and aperture problems. Sometimes, the inversion of the linear system (79) can
be poorly conditioned because of lack of two-dimensional texture in the patch being aligned. A

commonly occurring example of this is theaperture problem, first identified in some of the early
papers on optic flow (Horn and Schunck 1981) and then studied more extensively by Anandan

(1989). Consider an image patch that consists of a slanted edge moving to the right. Only the
normal component of the velocity (displacement) can be reliably recovered in this case. This
manifests itself in (79) as arank-deficientmatrix A, i.e., one whose smaller eigenvalue is very

close to zero.12

When equation (79) is solved, the component of the displacement along the edge is very poorly

conditioned and can result in wild guesses under small noiseperturbations. One way to mitigate
this problem is to add aprior (soft constraint) on the expected range of motions (Simoncelli et al.

1991, Bakeret al.2004). This can be accomplished by adding a small value to thediagonal ofA,
which essentially biases the solution towards smaller∆u values that still (mostly) minimize the

squared error.
However, the pure Gaussian model assumed when using a simple(fixed) quadratic prior, as in

(Simoncelliet al. 1991), does not always hold in practice, e.g., because of aliasing along strong

edges (Triggs 2004). For this reason, it may be prudent to addsome small fraction (say 5%) of the
larger eigenvalue to the smaller one before doing the matrixinversion.

Uncertainty modeling The reliability of a particular patch-based motion estimate can be cap-

tured more formally with anuncertainty model. The simplest such model is acovariance matrix,
which captures the expected variance in the motion estimatein all possible directions. Under small

amounts of additive Gaussian noise, it can be shown that the covariance matrixΣu is proportional
to the inverse of the HessianA,

Σu = σ2
nA−1, (84)

whereσ2
n is the variance of the additive Gaussian noise (Anandan 1989, Matthieset al. 1989,

Szeliski 1989). For larger amounts of noise, the linearization performed by the Lucas-Kanade

algorithm in (77) is only approximate, so the above quantitybecomes theCramer-Rao lower bound

on the true covariance. Thus, the minimum and maximum eigenvalues of the HessianA can now

be interpreted as the (scaled) inverse variances in the least-certain and most-certain directions of
motion.

12The matrixA is by construction always guaranteed to be symmetric positive semi-definite, i.e., it has real non-
negative eigenvalues.
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Bias and gain, weighting, and robust error metrics. The Lucas-Kanade update rule can also
be applied to the bias-gain equation (51) to obtain

ELK−BG(u + ∆u) =
∑

i

[J1(xi + u)∆u + ei − αI0(xi)− β]2 (85)

(Lucas and Kanade 1981, Gennert 1988, Fuh and Maragos 1991, Bakeret al.2003b). The resulting

4×4 system of equations in can be solved to simultaneously estimate the translational displacement
update∆u and the bias and gain parametersβ andα.13

A similar formulation can be derived for images (templates)that have alinear appearance

variation,
I1(x + u) ≈ I0(x) +

∑

j

λjBj(x), (86)

where theBj(x) are thebasis imagesand theλj are the unknown coefficients (Hager and Bel-
humeur 1998, Bakeret al. 2003a, Bakeret al. 2003b). Potential linear appearance variations in-
clude illumination changes (Hager and Belhumeur 1998) and small non-rigid deformations (Black

and Jepson 1998).
A weighted (windowed) version of the Lucas-Kanade algorithm is also possible,

ELK−WSSD(u + ∆u) =
∑

i

w0(x)w1(xi + u)[J1(xi + u)∆u + ei]
2. (87)

Note that here, in deriving the Lucas-Kanade update from theoriginal weighted SSD function
(47), we have neglected taking the derivative ofw1(xi + u) weighting function with respect tou,

which is usually acceptable in practice, especially if the weighting function is a binary mask with
relatively few transitions.

Bakeret al. (2003a) only use thew0(x) term, which is reasonable if the two images have the
same extent and no (independent) cutouts in the overlap region. They also discuss the idea of mak-

ing the weighting proportional to∇I(x), which helps for very noisy images, where the gradient
itself is noisy. Similar observation, formulated in terms of total least squares(Huffel and Vande-
walle 1991), have been made by other researchers studying optic flow (motion) estimation (Weber

and Malik 1995). Lastly, Bakeret al. (2003a) show how evaluating (87) at just themost reliable

(highest gradient) pixels does not significantly reduce performance for large enough images, even

if only 5%-10% of the pixels are used. (This idea was originally proposed by Dellaert and Collins
(1999), who used a more sophisticated selection criterion.)

The Lucas-Kanade incremental refinement step can also be applied to the robust error metric
introduced in§3.1,

ELK−SRD(u + ∆u) =
∑

i

ρ(J1(xi + u)∆u + ei). (88)

13In practice, it may be possible to decouple the bias-gain andmotion update parameters, i.e., to solve two indepen-
dent2× 2 systems, which is a little faster.
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We can take the derivative of this function w.r.t.u and set it to 0,

∑

i

ψ(ei)
∂ei

∂u
=

∑

i

ψ(ei)J1(x + u) = 0, (89)

whereΨ(e) = ρ′(e) is the derivative ofρ. If we introduce a weight functionw(e) = Ψ(e)/e, we
can write this as

∑

i

w(ei)J
T
1 (x + u)[J1(xi + u)∆u + ei] = 0. (90)

This results in theIteratively Re-weighted Least Squaresalgorithm, which alternates between com-

puting the weight functionsw(ei) and solving the above weighted least squares problem (Hu-
ber 1981, Stewart 1999). Alternative incremental robust least squares algorithms can be found
in (Sawhney and Ayer 1996, Black and Anandan 1996, Black and Rangarajan 1996, Bakeret

al. 2003a) and textbooks and tutorials on robust statistics (Huber 1981, Hampelet al. 1986,
Rousseeuw and Leroy 1987, Stewart 1999).

3.5 Parametric motion

Many image alignment tasks, for example image stitching with handheld cameras, require the use
of more sophisticated motion models, as described in§2. Since these models typically have more

parameters than pure translation, a full search over the possible range of values is impractical.
Instead, the incremental Lucas-Kanade algorithm can be generalized to parametric motion models

and used in conjunction with a hierarchical search algorithm (Lucas and Kanade 1981, Rehg and
Witkin 1991, Fuh and Maragos 1991, Bergenet al.1992, Baker and Matthews 2004).

For parametric motion, instead of using a single constant translation vectoru, we use a spatially
varyingmotion fieldor correspondence map, x′(x; p), parameterized by a low-dimensional vector

p, wherex′ can be any of the motion models presented in§2. The parametric incremental motion
update rule now becomes

ELK−PM(p + ∆p) =
∑

i

[I1(x
′(xi; p + ∆p))− I0(xi)]

2 (91)

≈
∑

i

[I1(x
′
i) + J1(x

′
i)∆p− I0(xi)]

2 (92)

=
∑

i

[J1(x
′
i)∆p + ei]

2, (93)

where the Jacobian is now

J1(x
′
i) =

∂I1
∂p

= ∇I1(x′
i)
∂x′

∂p
(xi), (94)

i.e., the product of the image gradient∇I1 with the Jacobian of correspondence field,Jx′ =

∂x′/∂p.
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Transform Matrix Parameters JacobianJx′

translation





1 0 tx
0 1 ty





(tx, ty)





1 0

0 1





Euclidean





cθ −sθ tx
sθ cθ ty





(tx, ty, θ)





1 0 −sθx− cθy
0 1 cθx− sθy





similarity





1 + a −b tx
b 1 + a ty





(tx, ty, a, b)





1 0 x −y
0 1 y x





affine





1 + a00 a01 tx
a10 1 + a11 ty





(tx, ty, a00, a01, a10, a11)





1 0 x y 0 0

0 1 0 0 x y





projective









1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1









(h00, . . . , h21)
(see text)

Table 2: Jacobians of the 2D coordinate transformations.

Table 2 shows the motion JacobiansJx′ for the 2D planar transformations introduced in§2.

Note how I have re-parameterized the motion matrices so thatthey are always the identity at the
origin p = 0. This will become useful below, when we talk about the compositional and inverse

compositional algorithms. (It also makes it easier to impose priors on the motions.)
The derivatives in Table 2 are all fairly straightforward, except for the projective 2-D motion

(homography), which requires a per-pixel division to evaluate, c.f. (8), re-written here in its new

parametric form as

x′ =
(1 + h00)x+ h01y + h02

h20x+ h21y + 1
and y′ =

h10x+ (1 + h11)y + h12

h20x+ h21y + 1
. (95)

The Jacobian is therefore

Jx′ =
∂x′

∂p
=

1

D





x y 1 0 0 0 −x′x −x′y
0 0 0 x y 1 −y′x −y′y



 , (96)

whereD is the denominator in (95), which depends on the current parameter settings (as dox′ and
y′).

For parametric motion, theHessianandgradient-weighted residual vectorbecome

A =
∑

i

JT
x′(xi)[∇IT

1 (x′
i)∇I1(x′

i)]Jx′(xi) (97)
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and
b = −

∑

i

JT
x′(xi)[ei∇IT

1 (x′
i)]. (98)

Note how the expressions inside the square brackets are the same ones evaluated for the simpler
translational motion case (80–81).

Patch-based approximation. The computation of the Hessian and residual vectors for paramet-
ric motion can be significantly more expensive than for the translational case. For parametric

motion withn parameters andN pixels, the accumulation ofA andb takes O(n2N) operations
(Baker and Matthews 2004). One way to reduce this by a significant amount is to divide the image

up into smaller sub-blocks (patches)Pj and to only accumulate the simpler2× 2 quantities inside
the square brackets at the pixel level (Shum and Szeliski 2000),

Aj =
∑

i∈Pj

∇IT
1 (x′

i)∇I1(x′
i) (99)

bj =
∑

i∈Pj

ei∇IT
1 (x′

i). (100)

The full Hessian and residual can then be approximated as

A ≈
∑

j

JT
x′(x̂j)[

∑

i∈Pj

∇IT
1 (x′

i)∇I1(x′
i)]Jx′(x̂j) =

∑

j

JT
x′(x̂j)AjJx′(x̂j) (101)

and
b ≈ −

∑

j

JT
x′(x̂j)[

∑

i∈Pj

ei∇IT
1 (x′

i)] = −
∑

j

JT
x′(x̂j)bj , (102)

wherex̂j is thecenterof each patchPj (Shum and Szeliski 2000). This is equivalent to replacing
the true motion Jacobian with a piecewise-constant approximation. In practice, this works quite
well. The relationship of this approximation to feature-based registration is discussed in§4.4.

Compositional approach For a complex parametric motion such as a homography, the compu-

tation of the motion Jacobian becomes complicated, and may involve a per-pixel division. Szeliski
and Shum (1997) observed that this can be simplified by first warping the target imageI1 according
to the current motion estimatex′(x; p),

Ĩ1(x) = I1(x
′(x; p)), (103)

and then comparing thiswarpedimage against the templateI0(x),

ELK−SS(∆p) =
∑

i

[Ĩ1(x̃(xi; ∆p))− I0(xi)]
2

≈
∑

i

[J̃1(xi)∆p + ei]
2 (104)

=
∑

i

[∇Ĩ1(xi)Jx̃(xi)∆p + ei]
2. (105)
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Note that since the two images are assumed to be fairly similar, only an incrementalparametric
motion is required, i.e., the incremental motion can be evaluated aroundp = 0, which can lead

to considerable simplifications. For example, the Jacobianof the planar projective transform (95)
now becomes

Jx̃ =
∂x̃

∂p

∣

∣

∣

∣

∣

p=0

=





x y 1 0 0 0 −x2 −xy
0 0 0 x y 1 −xy −y2



 . (106)

Once the incremental motioñx has been computed, it can beprependedto the previously estimated
motion, which is easy to do for motions represented with transformation matrices, such as those

given in Tables 1–2. Baker and Matthews (2004) call this theforward compositionalalgorithm,
since the target image is being re-warped, and the final motion estimates are being composed.

If the appearance of the warped and template images is similar enough, we can replace the
gradient ofĨ1(x) with the gradient ofI0(x), as suggested previously in (83). This has potentially a

big advantage in that it allows the pre-computation (and inversion) of the Hessian matrixA given in
(97). The residual vectorb (98) can also be partially precomputed, i.e., thesteepest descentimages
∇I0(x)Jx̃(x) can precomputed and stored for later multiplication with thee(x) = Ĩ1(x)− I0(x)

error images (Baker and Matthews 2004). This idea was first suggested by Hager and Belhumeur
(1998) in what Baker and Matthews (2004) call aforward additivescheme.

Baker and Matthews (2004) introduce one more variant they call the inverse compositional

algorithm. Rather than (conceptually) re-warping the warped target imagẽI1(x), they instead

warp the template imageI0(x) and minimize

ELK−BM(∆p) =
∑

i

[Ĩ1(xi)− I0(x̃(xi; ∆p))]2

≈
∑

i

[∇I0(xi)Jx̃(xi)∆p− ei]
2. (107)

This is identical to the forward warped algorithm (105) withthe gradients∇Ĩ1(x) replaced by the
gradients∇I0(x), except for the sign ofei. The resulting update∆p is thenegativeof the one

computed by the modified (105), and hence theinverseof the incremental transformation must be
prepended to the current transform. Because the inverse compositional algorithm has the potential

of pre-computing the inverse Hessian and the steepest descent images, this makes it the preferred
approach of those surveyed in (Baker and Matthews 2004).

[ Note: Add low-res copy of figure from PDFs, then ask Simon forpermission to use Figure 2

from (Baker and Matthews 2004) and 3 from (Bakeret al.2003a), which show the contrast between

the regular and inverse compositional algorithm. Similar (but much less elegant) diagrams appear

in (Szeliski and Coughlan 1997), but don’t bother mentioning this. ]

Baker and Matthews (2004) also discusses the advantage of using Gauss-Newton iteration (i.e.,

the first order expansion of the least squares, as above) vs. other approaches such as steepest de-
scent and Levenberg-Marquardt. Subsequent parts of the series (Bakeret al. 2003a, Bakeret al.
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2003b, Bakeret al. 2004) discuss more advanced topics such as per-pixel weighting, pixel selec-
tion for efficiency, a more in-depth discussion of robust metrics and algorithms, linear appearance

variations, and priors on parameters. They make for invaluable reading for anyone interested in
implementing a highly tuned implementation of incrementalimage registration.

[ Note: The following should be discussed later, e.g., in§4.3: Describe how 3D rotation

updates are made incrementally (Szeliski and Shum 1997). Focal length estimation from homogra-

phies (Szeliski and Shum 1997), which should probably go in 3D motion models (see placeholder).

Gap closing (Szeliski and Shum 1997). ]

4 Feature-based registration

As I mentioned earlier, directly matching pixel intensities is just one possible approach to image
registration. The other major approach is to first extract distinctive featuresfrom each image,
to next match individual features to establish a global correspondence, and to then estimate the

geometric transformation between the images. This kind of approach has been used since the early
days of stereo matching (Hannah 1974, Hannah 1988) and has more recently gained popularity for

image stitching applications (Zoghlamiet al.1997, Capel and Zisserman 1998, Cham and Cipolla
1998, Badraet al.1998, McLauchlan and Jaenicke 2002, Brown and Lowe 2003).

In this section, I review methods for detecting distinctivepoints, for matching them, and for
computing the image registration, including the 3D rotation model introduced in§2.2. I also dis-

cuss the relative advantages and disadvantages of direct and feature-based approaches.

4.1 Interest point detectors

As we saw in§3.4, the reliability of a motion estimate depends most critically on the size of the
smallest eigenvalue of the image Hessian matrix,λ0 (Anandan 1989). This makes it a reasonable

candidate for finding points in the image that can be matched with high accuracy. (Older termi-
nology in this field talked about “corner-like” features, but the modern usage isinterest points.)

Indeed, Shi and Tomasi (1994) propose using this quantity tofind good features to track, and then
use a combination of translational and affine-based patch alignment to track such points through

an image sequence.
Using a square patch with equal weighting may not be the best choice. Instead, a Gaussian

weighting function can be used. Förstner (1986) and Harrisand Stephens (1988) both proposed

finding interest points using such an approach. The Hessian and eigenvalue images can be effi-
ciently evaluated using a sequence of filters and algebraic operations,

Gx(x) =
∂

∂x
Gσd

(x) ∗ I(x), (108)
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Gy(x) =
∂

∂y
Gσd

(x) ∗ I(x), (109)

B(x) =





G2
x(x) Gx(x)Gy(x)

Gx(x)Gy(x) G2
y(x)



 , (110)

A(x) = Gσi
(x) ∗B(x) (111)

λ0,1(x) =
a00 + a11 ∓

√

(a00 − a11)2 + a01a10

2
, (112)

whereGσd
is a noise-reducing pre-smoothing “derivative” filter of width σd, andGσi

is the in-
tegration filter whose scaleσi controls the effective patch size. (Theaij are the entries in the
A(x) matrix, where I have dropped the(x) for succinctness.) For example, Förstner (1994) uses

σd = 0.7 andσi = 2. Once the minimum eigenvalue image has been computed, localmaxima can
be found as potential interest points.

The minimum eigenvalue is not the only quantity that can be used to find interest points. A
simpler quantity, proposed by Harris and Stephens (1988) is

det(A)− α trace(A)2 = λ0λ1 − α(λ0 + λ1)
2 (113)

with α = 0.06. Triggs (2004) suggest using the quantity

λ0 − αλ1 (114)

(say withα = 0.05), which reduces the response at 1D edges, where aliasing errors sometimes

affect the smaller eigenvalue. He also shows how the basic2 × 2 Hessian can be extended to
parametric motions to detect points that are also accurately localizable in scale and rotation.

Schmidet al. (2000) survey the vast literature on interest point detection and perform some

experimental comparisons to determine therepeatabilityof feature detectors, which is defined as
the frequency with which interest points detected in one image are found withinǫ = 1.5 pixels of

the corresponding location in a warped image. They also measure theinformation contentavailable
at each detected feature point, which they define as the entropy of a set of rotationally invariant

local grayscale descriptors. Among the techniques they survey, they find that animprovedversion
of the Harris operator withσd = 1 andσi = 2 works best. (The original Harris and Stephens

(1988) paper uses a discrete[−2−1 0 1 2] filter to perform the initial derivative computations, and
performs much worse.)

More recently, feature detectors that are more invariant toscale (Lowe 2004, Mikolajczyk and

Schmid 2004) and affine transformations (Mikolajczyk and Schmid 2004) have been proposed.
These can be very useful when matching images that have different scales or aspects (e.g., for 3D

object recognition). A simple way to achieve scale invariance is to look for scale-space maxima
in a Difference of Gaussian (DOG) (Lowe 2004) or Harris corner (Mikolajczyk and Schmid 2004,
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Triggs 2004) detector over a sub-octave pyramid, i.e., an image pyramid where the subsampling
between adjacent levels is less than a factor of two. Lowe’s original (2004) paper uses a half-octave

(
√

2) pyramid, whereas Triggs (2004) recommends using a quarter-octave (4
√

2).
Of course, interest points are not the only kind of features that can be used for registering

images. Zoghlamiet al. (1997) use line segments as well as point-like features to estimate ho-
mographies between pairs of images, whereas (Bartoliet al. 2004) use line segments with local
correspondences along the edges to extract 3D structure andmotion. Tuytelaars and Van Gool

(2004) use affine invariant regions to detect correspondeces for wide baseline stereo matching.
Mataset al.(2004) detectmaximally stable regions, using an algorithm related to watershed detec-

tion, whereas Kadiret al. (2004) detect salient regions where patch entropy and its rate of change
with scale are locally maximal. While these techniques can be used to solve image registration

problems, they will not be covered in more detail in this survey.

4.2 Feature matching

After detecting the features (interest points), we mustmatchthem, i.e., determine which features
come from corresponding locations in different images. In some situations, e.g., for video se-

quences (Shi and Tomasi 1994) or for stereo pairs that have beenrectified(Loop and Zhang 1999,
Scharstein and Szeliski 2002), the local motion around eachfeature point may be mostly trans-

lational. In this case, the error metrics introduced in§3.1 such asESSD or ENCC can be used
to directly compare the intensities in small patches aroundeach feature point. (The comparative

study by Mikolajczyk and Schmid (2003) discussed below usescross-correlation.) Because feature
points may not be exactly located, a more accurate matching score can be computed by performing
incremental motion refinement as described in§3.4, but this can be time consuming.

If features are being tracked over longer image sequences, their appearance can undergo larger
changes. In this case, it makes sense to compare appearancesusing anaffinemotion model. Shi

and Tomasi (1994) compare patches using a translational model between neighboring frames, and
then use the location estimate produced by this step to initialize an affine registration between

the patch in the current frame and the base frame where a feature was first detected. In fact,
features are only detected infrequently, i.e., only in region where tracking has failed. In the usual
case, an area around the currentpredictedlocation of the feature is searched with an incremental

registration algorithm. This kind of algorithm is adetect then trackapproach, since detection
occurs infrequently. It is appropriate for video sequenceswhere the expected locations of feature

points can be reasonably well predicted.
For larger motions, or for matching collections of images where the geometric relationship

between them is unknown (Schaffalitzky and Zisserman 2002,Brown and Lowe 2003), adetect

then matchapproach in which feature points are first detected in all images is more appropriate.
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Because the features can appear at different orientations or scales, a moreview invariantkind of
representation must be used. Mikolajczyk and Schmid (2003)review some recently developed

view-invariant local image descriptors and experimentally compare their performance.
The simplest method to compensate for in-plane rotations isto find adominant orientation

at each feature point location before sampling the patch or otherwise computing the descriptor.
Mikolajczyk and Schmid (2003) use the direction of the average gradient orientation, computed
within a small neighborhood of each feature point. The descriptor can be made invariant to scale

by only selecting feature points that are local maxima in scale space, as discussed in§4.1. Making
the descriptors invariant to affine deformations (stretch,squash, skew) is even harder; Mikolajczyk

and Schmid (2004) use the local second moment matrix around afeature point to define a canonical
frame.

Among the local descriptors that Mikolajczyk and Schmid (2003) compared, In their exper-
imental comparisons, Mikolajczyk and Schmid (2003) found that SIFT features generally per-

formed best, followed by steerable filters,
David Lowe’s (2004) Scale Invariant Feature Transform (SIFT) generally performed the best,

followed by Freeman and Adelson’s (1991) steerable filters and then cross-correlation (which could

potentially be improved with an incremental refinement of location and pose). Differential invari-
ants, whose descriptors are insensitive to changes in orientation by design, did not do as well.

SIFT features are computed by first estimating a local orientation using a histogram of the local
gradient orientations, which is potentially more accuratethan just the average orientation. Once

the local frame has been established, gradients are copied into different orientation planes, and
blurred resampled versions of these images as used as the features. This provides the descriptor
with some insensitivity to small feature localization errors and geometric distortions (Lowe 2004).

Steerable filters are combinations of derivative of Gaussian filters that permit the rapid com-
putation of even and odd (symmetric and anti-symmetric) edge-like and corner-like features at all

possible orientations (Freeman and Adelson 1991). Becausethey use reasonably broad Gaussians,
they too are somewhat insensitive to localization and orientation errors.

Rapid indexing and matching. The simplest way to find all corresponding feature points in an

image pair is to compare all features in one image against allfeatures in the other, using one of
the local descriptors described above. Unfortunately, this is quadratic in the expected number of

features, which makes it impractical for some applications.
More efficient matching algorithms can be devised using different kinds ofindexing schemes.

Many of these are based on the idea of finding nearest neighbors in high-dimensional spaces. For
example, Nene and Nayar (1997) developed a technique they call slicing that uses a series of 1D
binary searches to efficiently cull down a list of candidate points that lie within a hypercube of the

query point. They also provide a nice review of previous workin this area, including spatial data
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structures such ask-d trees (Samet 1989). Beis and Lowe (1997) propose a Best-Bin-First (BBF)
algorithm, which uses a modified search ordering for ak-d tree algorithm so that bins in feature

space are searched in the order of their closest distance from query location. Shakhnarovichet

al. (2003) extend a previously developed technique calledlocality-sensitive hashing, which uses

unions of independently computed hashing functions, to be more sensitive to the distribution of
points in parameter space, which they callparameter-sensitive hashing. Despite all of this promis-
ing work, the rapid computation of image feature correspondences is far from being a solved

problem.

RANSAC and LMS. Once an initial set of feature correspondences has been computed, we
need to find a set that is will produce a high-accuracy alignment. One possible approach is to

simply compute a least squares estimate, or to use a robustified (iteratively re-weighted) version
of least squares, as discussed below (§4.3). However, in many cases, it is better to first find a good
starting set ofinlier correspondences, i.e., points that are all consistent withsome particular motion

estimate.14

Two widely used solution to this problem are called RANdom SAmple Consensus, or RANSAC

for short (Fischler and Bolles 1981) andleast median of squares(LMS) (Rousseeuw 1984). Both
techniques start by selecting (at random) a subset ofk correspondences, which is then used to

compute a motion estimatep, as described in§4.3. Theresidualsof the full set of correspondences
are then computed as

ri = x̃′
i(xi; p)− x̂′

i, (115)

where x̃′
i are theestimated(mapped) locations, and̂x′

i are the sensed (detected) feature point
locations.

The RANSAC technique then counts the number ofinliers that are withinǫ of their predicted

location, i.e., whose‖ri‖ ≤ ǫ. (The ǫ value is application dependent, but often is around 1-3
pixels.) Least median of squares finds the median value of the‖ri‖ values.

The random selection process is repeatedS times, and the sample set with largest number
of inliers (or with the smallest median residual) is kept as the final solution. Either the initial

parameter guessp or the full set of computed inliers is then passed on to the next data fitting stage.
To ensure that the random sampling has a good chance of findinga true set of inliers, a sufficient

number of trialsS must be tried. Letp be the probability that any given correspondence is valid,
andP be the total probability of success afterS trials. The likelihood in one trial that allk random
samples are inliers ispk. Therefore, the likelihood thatS such trials will all fail is

1− P = (1− pk)S (116)

14For direct estimation methods, hierarchical (coarse-to-fine) techniques are often used to lock onto thedominant
motionin a scene (Bergenet al.1992).
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and the required minimum number of trials is

S =
log(1− P )

log(1− pk)
. (117)

Stewart (1999) gives the following examples of the requirednumber of trialsS to attain a 99%
probability of success:

k p S

3 0.5 35

6 0.6 97

6 0.5 293

.

As you can see, the number of trials grows quickly with the number of sample points used. This
provides a strong incentive to use theminimumnumber of sample pointsk possible for any given

trial, which in practice is how RANSAC is normally used.

4.3 Geometric registration

Once we have computed a set of matched feature point correspondences, the next stip is to estimate
the motion parametersp that best register the two images. The usual way to do this is to use least

squares, i.e., to minimize the sum of squared residuals given by (115),

ELS =
∑

i

‖ri‖2 = ‖x̃′
i(xi; p)− x̂′

i‖2. (118)

Many of the motion models presented in§2, i.e., translation, similarity, and affine, have alinear

relationship between the motion and the unknown parametersp.15 In this case, a simple linear

regression (least squares) using normal equationsAp = b works well.

Uncertainty weighting and robust regression. The above least squares formulation assumes
that all feature points are matched with the same accuracy. This is often not the case, since certain

points may fall in more textured regions than others. If we associate a variance estimateσ2
i with

each correspondence, we can minimizeweighted least squaresinstead,

EWLS =
∑

i

σ−2
i ‖ri‖2. (119)

As discussed in§3.4, a covariance estimate for patch-based matching can be obtained by multi-
plying the inverse of the Hessian with the per-pixel noise estimate (84). Weighting each squared

152-D Euclidean motion can be estimated with a linear algorithm by first estimating the cosine and sine entries
independently, and then normalizing them so their magnitude is 1.
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residual by the inverse covarianceΣ−1
i = σ−2

n Ai (which is called theinformation matrix), we
obtain

ECWLS =
∑

i

‖ri‖2Σ−1

i

=
∑

i

rT
i Σ−1

i ri =
∑

i

σ−2
n rT

i Airi, (120)

whereAi is thepatch Hessian(99).

If there are outliers among the feature-based correspondences (and there almost always are), it
is better to use a robust version of least squares, even if an initial RANSAC or MLS stage has been

used to select plausible inliers. The robust least squares cost metric (analogous to (44)) is then

ERLS(u) =
∑

i

ρ(‖ri‖Σ−1

i
). (121)

As before, a commonly used approach to minimize this quantity is to use iteratively re-weighted

least squares, as described in§3.4.

Homography update. For non-linearmeasurement equations such as the homography given in

(95), rewritten here as

x̂′ =
(1 + h00)x+ h01y + h02

h20x+ h21y + 1
and ŷ′ =

h10x+ (1 + h11)y + h12

h20x+ h21y + 1
, (122)

an iterative solution is required to obtain accurate results. An initial guess for the 8 unknowns

{h00, . . . , h21} can be obtained by multiplying both sides of the equations through by the denomi-
nator, which yields the linear set of equations,





x̂′ − x
ŷ′ − y



 =





x y 1 0 0 0 −x̂′x −x̂′y
0 0 0 x y 1 −ŷ′x −ŷ′y















h00

...
h21











. (123)

However, this is not optimal from a statistical point of view, since the denominator can vary quite
a bit from point to point.

One way to compensate for this is tore-weighteach equation by the inverse of current estimate
of the denominator,D,

1

D





x̂′ − x
ŷ′ − y



 =
1

D





x y 1 0 0 0 −x̂′x −x̂′y
0 0 0 x y 1 −ŷ′x −ŷ′y















h00

...

h21











. (124)

While this may at first seem to be the exact same set of equations as (123), since least squares is

being used to solve the over-determined set of equations, the weightingsdo matter, and result in a
different set of normal equations that perform better in practice (with noisy data).
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The most principled way to do the estimation, however, is to directly minimize the squared
residual equations (115) using the Gauss-Newton approximation, i.e., performing a first-order Tay-

lor series expansion inp, which yields,

x̂′
i − x̃′

i(xi; p) = Jx′∆p (125)

or




x̂′ − x̃′
ŷ′ − ỹ′



 =
1

D





x y 1 0 0 0 −x̃′x −x̃′y
0 0 0 x y 1 −ỹ′x −ỹ′y















∆h00

...
∆h21











. (126)

While this looks similar to (124), it differs in two important respects. First, the left hand side
consists of unweightedprediction errorsrather than pixel displacements, and the solution vector

is a perturbationto the parameter vectorp. Second the quantities insideJx′ involve predicted

feature locations(x̃′, ỹ′) instead ofsensedfeature locations(x̂′, ŷ′). Both of these are subtle and

yet they lead to an algorithm that, when combined with properchecking for downhill steps (as in
the Levenberg-Marquardt algorithm), will converge to a minimum. (Iterating the (124) equations
is not guaranteed to do so, since it is not minimizing a well-defined energy function.)

The above formula is analagous to theadditivealgorithm for direct registration since the change
to the full transformation is being computed. If we prepend an incremental homography to the

current homography instead, i.e., we use acompositionalalgorithm, we getD = 1 (sincep = 0)
and the above formula simplifies to





x̂′ − x
ŷ′ − y



 =





x y 1 0 0 0 −x2 −xy
0 0 0 x y 1 −xy −y2















∆h00

...

∆h21











, (127)

where I have replaced(x̃′, ỹ′) with (x, y) for conciseness. (Notice how this results in the same
Jacobian as (106).)

Rotational panorama update. As described in§2.2, representing the alignment of images in a

panorama using a collection of rotation matrices and focal lengths results in a much more stable
estimation problem than directly using homographies (Szeliski 1996, Szeliski and Shum 1997).

Given this representation, how do we update the rotation matrices to best align two overlapping
images?

Recall from (18–19) that the equations relating two views can be written as

x̃1 ∼ H̃10x̃0 with H̃10 = K1R10K
−1
0 , (128)
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whereKk = diag(fk, fk, 1) is the calibration matrix andR10 = R1R
−1
0 is rotationbetweenthe

two views. The best way to updateR10 is to prepend anincrementalrotation matrixR(~ω) to the

current estimateR10 (Szeliski and Shum 1997, Shum and Szeliski 2000),

H̃(~ω) = K1R(~ω)R10K
−1
0 = [K1R(~ω)K−1

1 ][K1R10K
−1
0 ] = DH̃10. (129)

Note that here I have written the update rule in thecompositionalform, where the incremental
updateD is prependedto the current homographỹH10. Using the small-angle approximation to

R(~ω) given in (25), we can write the incremental update matrix as

D = K1R(~ω)K−1
1 ≈K1(I + [~ω]×)K−1

1 =









1 −ωz f1ωy

ωz 1 −f1ωx

−ωy/f1 ωx/f1 1









.b (130)

Notice how there is now a nice one-to-one correspondence between the entries in theD matrix

and theh00, . . . , h21 parameters used in Table 2 and (122), i.e.,

(h00, h01, h02, h00, h11, h12, h20, h21) = (0,−ωz, f1ωy, ωz, 0,−f1ωx,−ωy/f1, ωx/f1). (131)

We can therefore apply the chain rule to (127) and (131) to obtain





x̂′ − x
ŷ′ − y



 =





−xy/f1 f1 + x2/f1 −y
−(f1 + y2/f1) xy/f1 x













ωx

ωy

ωz









, (132)

which give us the linearized update equations needed to estimate~ω = (ωx, ωy, ωz).16 Notice that
this update rule depends on the focal lengthf1 of the targetview, and is independent of the focal

lengthf0 of the templateview. This is because the compositional algorithm essentially makes
small perturbations to the target.[ Note: see (Szeliski and Shum 1997) for some figures to add

here. ]

The formulas for updating the focal length estimates are a little more involved, and are given

in (Shum and Szeliski 2000). I will not repeat them here, since an alternative update rule, based on
minimizing the difference between back-projected 3D rays,will be given in§5.1.

Focal length initialization [ Note: Copy the text here from (Szeliski and Shum 1997). ]

16This is the same as the rotational component of instantaneous rigid flow (Bergenet al.1992) and the same as the
update equations given in (Szeliski and Shum 1997, Shum and Szeliski 2000).
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4.4 Direct vs. feature-based

Given that there are these two alternative approaches to aligning images, which is preferable?

I used to be firmly in the direct the direct matching camp (Triggset al.2000). Early feature-
based methods seemed to get confused in regions that were either too textured or not textured

enough. The features would often be distributed unevenly over the images, thereby failing to match
image pairs that should have been aligned. Furthermore, establishing correspondences relied on

simple cross-correlation between patches surrounding thefeature points, which did not work well
when the images were rotated or had foreshortening due to homographies.

Today, feature detection and matching schemes are remarkably robust, and can even be used for
known object recognition from widely separated views (Lowe2004). Features not only respond
to regions of high “cornerness” (Förstner 1986, Harris andStephens 1988), but also to “blob-like”

regions (Lowe 2004), as well as uniform areas (Tuytelaars and Van Gool 2004). Furthermore,
because they operate in scale-space and use a dominant orientation (or orientation invariant de-

scriptors), they can match images that differ in scale, orientation, and even foreshortening. My
own recent experience in working with feature-based approaches is that if the features are well

distributed over the image and the descriptors reasonably designed for repeatability, enough corre-
spondences to permit image stitching can usually be found.

The other major reason I used to prefer direct methods was that they make optimal use of the
information available in image alignment, since they measure the contribution ofeverypixel in
the image. Furthermore, assuming a Gaussian noise model (ora robustified version of it), they

properly weight the contribution of different pixels, e.g., by emphasizing the contribution of high-
gradient pixels. (See Bakeret al. (2003a), who suggest that adding even more weight at strong

gradients is preferable because of noise in the gradient estimates.) One could argue that for a
blurry image with only slowly varying gradients, a direct approach will find an alignment, whereas

a feature detector will fail to find anything. However, such images rarely occur in practice, and the
use of scale-space features means that some features can be found at lower resolutions.

The biggest disadvantage of direct techniques is that they have a limited range of convergence.

Even though they can be used in a hierarchical (coarse-to-fine) estimation framework, but in prac-
tice, it is hard to use more than two or three levels of a pyramid before important details start to

be blurred away. For matching sequential frames in a video, the direct approach can usually be
made to work. However, for matching partially overlapping images in photo-based panoramas,

they fail too often to be useful. My older systems for image stitching (Szeliski 1996, Szeliski and
Shum 1997) relied on Fourier-based correlation of cylindrical images and motion prediction to au-

tomatically align images, but had to be corrected by hand formore complex sequences. My newer
system, built in collaboration with Matthew Brown (who firstsuggested recognizing panoramas),
uses features and has a good success rate at automatically stitching panoramas without any user
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intervention. [ Note: Add a cite here to MOPs paper, either as a MSR-TR, or just submission to

CVPR. ]

Is there no rôle then for direct registration? I believe there is. Once a pair of images has been
aligned with a feature-based approach, we can warp the two images to a common reference frame

and re-compute a more accurate estimate using patch-based alignment. Notice how there is a close
correspondence between the patch-based approximation to direct alignment given in (101–102)
and the inverse covariance weighted feature-based least squares error metric (120).

In fact, if we divide the template images up into patches and place an imaginary “feature
point” at the center of each patch, the two approaches returnexactly the same answer (assuming

that the correct correspondences are found in each case). However, for this approach to succeed,
we still have to deal with “outliers”, i.e., regions that don’t fit the selected motion model due

to either parallax (§5.2) or moving objects (§6.2). While a feature-based approach may make it
somewhat easier to reason about outliers (features can be classified as inliers or outliers), the patch-

based approach, since it establishes correspondences moredensely, is potentially more useful for
removing local mis-registration (parallax), as we discussin §5.2.

5 Global registration

So far, I have discussed how to register pairs of images usingboth direct and feature-based methods
using a variety of motion models. In most applications, we are given more than a single pair

of images to register. The goal is to find aglobally consistentset of alignment parameters that
minimize the mis-registration between all pairs of images (Szeliski and Shum 1997, Shum and
Szeliski 2000, Sawhney and Kumar 1999, Coorg and Teller 2000). In order to do this, we need to

extend the pairwise matching criteria (43), (92), and (118)to a global energy function that involves
all of the per-image pose parameters (§5.1). Once we have computed the global alignment, we

often need to performlocal adjustmentssuch asparallax removalto reduce double images and
blurring due to local mis-registrations (§5.2). Finally, if we are given an unordered set of images

to register, we need to discover which images go together to form one or more panoramas. This
process ofpanorama recognitionis described in§5.3.

5.1 Bundle adjustment

One way to register a large number of images is to add new images to the panorama one at a time,

aligning the most recent image with the previous ones already in the collection (Szeliski and Shum
1997), and discovering, if necessary, which images it overlaps (Sawhney and Kumar 1999). In

the case of360◦ panoramas, accumulated error may lead to the presence of agap (or excessive
overlap) between the two ends of the panorama, which can be fixed by stretching the alignment
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of all the images using a process calledgap closing(Szeliski and Shum 1997). However, a better
alternative is to simultaneously align all the images together using a least squares framework to

correctly distribute any mis-registration errors.
The process of simultaneously adjusting pose parameters for a large collection of overlapping

images is calledbundle adjustmentin the photogrammetry community (Triggset al. 1999). In
computer vision, it was first applied to the general structure from motion problem (Szeliski and
Kang 1994), and then later specialized for panoramic image stitching (Shum and Szeliski 2000,

Sawhney and Kumar 1999, Coorg and Teller 2000).
In this section, I formulate the problem of global alignmentusing a feature-based approach,

since this results in a simpler system. An equivalent directapproach can be obtained either by di-
viding images into patches and creating a virtual feature correspondence for each one (as discussed

in §4.4 and (Shum and Szeliski 2000)), or by replacing the per-feature error metrics with per-pixel
metrics.

Consider the feature-based alignment problem given in (118), i.e.,

Epairwise−LS =
∑

i

‖ri‖2 = ‖x̃′
i(xi; p)− x̂′

i‖2. (133)

For multi-image alignment, instead of having a single collection of pairwise feature correspon-
dences,{(xi, x̂

′
i)}, we have a collection ofn features, with the location of theith feature point in

the jth image denoted byxij and its scalar confidence (inverse variance) denoted bycij.17 Each
image also has some associatedposeparameters.

In this section, I assume that this pose consists of a rotation matrix Rj and a focal length
fj , although formulations in terms of homographies are also possible (Shum and Szeliski 1997,

Sawhney and Kumar 1999). The equation mapping a 3D pointxi into a pointxij in framej can
be re-written from (15–19) as

x̃ij ∼KjRjxi and xi ∼ R−1
j K−1

j x̃ij , (134)

whereKj = diag(fj , fj, 1) is the simplified form of the calibration matrix. The motion mapping

a pointxij from framej into a pointxik in framek is similarly given by

x̃ik ∼ H̃kjx̃ij = KkRkR
−1
j K−1

j x̃ij. (135)

Given an initial set of{(Rj, fj)} estimates obtained from chaining pairwise alignments, howdo
we refine these estimates?

17Features that not seen in imagej havecij = 0. We can also use2× 2 inverse covariance matricesΣij in place of
cij , as shown in (120).
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One approach is to directly extend the pairwise energyEpairwise−LS (133) to a multiview for-
mulation,

Eall−pairs−2D =
∑

i

∑

jk

cijcik‖x̃ik(x̂ij; Rj , fj,Rk, fk)− x̂ik‖2, (136)

where thex̃ik function is thepredictedlocation of featurei in frame k given by (135),x̂ij is

theobservedlocation, and the “2D” in the subscript indicates than an image-plane error is being
minimized (Shum and Szeliski 1997). Note that sincex̃ik depends on thêxij observed value,

we actually have anerrors-in-variableproblem, which in principle requires more sophisticated
techniques than least squares to solve. However, in practice, if we have enough features, we can
directly minimize the above quantity using regular non-linear least squares and obtain an accurate

multi-frame alignment.18

While this approach works well in practice, it suffers from two potential disadvantages. First,

since a summation is taken over all pairs with correspondingfeatures, features that are observed
many times get overweighted in the final solution. (In effect, a feature observedm times gets

counted
(

m

2

)

times instead ofm times.) Second, the derivatives ofx̃ik w.r.t. the{(Rj, fj)} are a
little cumbersome, although using the incremental correction toRj introduced in§2.2 makes this
more tractable.

An alternative way to formulate the optimization is to use true bundle adjustment, i.e., to solve
not only for the pose parameters{(Rj, fj)} but also for the 3D point positions{xi},

EBA−2D =
∑

i

∑

j

cij‖x̃ij(xi; Rj, fj)− x̂ij‖2, (137)

wherex̃ij(xi; Rj, fj) is given by (134). The disadvantage of full bundle adjustment is that there
are more variables to solve for, so both each iteration and the overall convergence may be slower.
(Imagine how the 3D points need to “shift” each time some rotation matrices are updated.) How-

ever, the computational complexity of each linearized Gauss-Newton step can be reduced using
sparse matrix techniques (Szeliski and Kang 1994, Shum and Szeliski 2000, Triggset al.1999).

An alternative formulation is to minimize the error in 3D projected ray directions (Shum and
Szeliski 2000), i.e.,

EBA−3D =
∑

i

∑

j

cij‖x̃i(x̂ij ; Rj , fj)− xi‖2, (138)

wherex̃i(xij ; Rj, fj) is given by the second half of (134). This in itself has no particular advantage
over (137). In fact, since errors are being minimized in 3D ray space, there is a bias towards

estimating longer focal lengths, since the angles between rays become smaller asf increases.

18While there exists an overall pose ambiguity in the solution, i.e., all theRj can be post-multiplied by an arbitrary
rotationRg, a well-conditioned non-linear least squares algorithm such as Levenberg Marquardt will handle this
degeneracy without trouble.
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However, if we eliminate the 3D raysxi, we can derive a pairwise energy formulated in 3D ray
space (Shum and Szeliski 2000),

Eall−pairs−3D =
∑

i

∑

jk

cijcik‖x̃i(x̂ij; Rj , fj)− x̃i(x̂ik; Rk, fk)‖2. (139)

This results in the simplest set of update equations (Shum and Szeliski 2000), since thefk can be
folded into the creation of the homogeneous coordinate vector as in (20). Thus, even though this

formula over-weights features that occur more frequently,it is the method used both by Shum and
Szeliski (2000) and in my current work. In order to reduce thebias towards longer focal lengths,

I multiply each residual (3D error) by
√

fjfk, which is similar to projecting the 3D rays into a
“virtual camera” of intermediate focal length, and which seems to work well in practice.

Up vector selection. As mentioned above, there exists a global ambiguity in the pose of the 3D

cameras computed by the above methods. While this may not appear to matter, people do have a
preference for the final stitched image to be “upright” rather than twisted or tilted. More concretely,
people are used to seeing photographs displayed so that the vertical (gravity) axis points straight

up in the image. Consider how you usually shoot photographs:while you may pan and tilt the
camera any which way, you usually keep vertical scene lines parallel to the vertical edge of the

image. In other words, the horizontal edge of your camera (itsx-axis) usually stays parallel to the
ground plane (perpendicular to the world gravity direction).

Mathematically, this constraint on the rotation matrices can be expressed as follows. Recall
from (134) that the 3D→2D projection is given by

x̃ij ∼KjRjxi. (140)

We wish to post-multiply each rotation matrixRk by a global rotationRg such that the projection
of the globaly-axis,̂ = (0, 1, 0) is perpendicular to the imagex-axis,ı̂ = (1, 0, 0).19

This constraint can be written as
ı̂T RkRg̂ = 0 (141)

(note that the scaling by the calibration matrix is irrelevant here). This is equivalent to requiring
that the first row ofRk, rk0 = ı̂T Rk be perpendicular to the second column ofRg, rg1 = Rg̂.

This set of constraints (one per input image) can be written as a least squares problem,

rg1 = arg min
r

∑

k

(rT rk0)
2 = arg min

r
rT

[

∑

k

rk0r
T
k0

]

r. (142)

19Note that here we use the convention common in computer graphics that the vertical world axis corresponds toy.
This is a natural choice if we wish the rotation matrix associated with a “regular” image taken horizontally to be the
identity, rather than a90◦ rotation around thex-axis.
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Thus,rg1 is the smallest eigenvector of thescatteror momentmatrix spanned by the individual
camera rotationx-vectors, which should generally be of the form(c, 0, s) when the cameras are

upright.
To fully specify theRg global rotation, we need to specify one additional constraint. This

is related to theview selectionproblem discussed in§6.1. One simple heuristic is to prefer the
averagez-axis of the individual rotation matrices,k =

∑

k k̂
T
Rk to be close to the worldz-axis,

rg2 = Rgk̂. We can therefore compute the full rotation matrixRg in three steps:

1. rg1 = min eigenvector(
∑

k rk0r
T
k0);

2. rg0 = N ((
∑

k rk2)× rg1);

3. rg2 = rg0 × rg1,

whereN (v) = v/‖v‖ normalizes a vectorv.

5.2 Parallax removal

Once we have optimized the global orientations and focal lengths of our cameras, we may find that

the images are still not perfectly aligned, i.e., the resulting stitched image looks blurry or ghosted
in some places. This can be caused by a variety of factors, including unmodeled radial distortion,

3D parallax (failure to rotate the camera around its opticalcenter), small scene motions such as
waving tree branches, and large-scale scene motions such aspeople moving in and out of pictures.

Each of these problems can be treated with a different approach. Radial distortion can be es-
timated (potentially before the camera’s first use) using one of the techniques discussed in§2.4.
For example, theplumb line method(Brown 1971, Kang 2001, El-Melegy and Farag 2003) ad-

justs radial distortion parameters until slightly curved lines become straight, while mosaic-based
approaches adjust them until mis-registration is reduced in image overlap areas (Stein 1997, Sawh-

ney and Kumar 1999).
3D parallax can be attacked by doing a full 3D bundle adjustment, i.e., replacing the projection

equation (134) used in (137) with (15), which models camera translations. The 3D positions of the
matched features points and cameras can then be simultaneously recovered, although this can be

significantly more expensive that parallax-free image registration. Once the 3D structure has been
recovered, the scene could (in theory) be projected to a single (central) viewpoint that contains
no parallax. However, in order to do this, densestereocorrespondence needs to be performed

(Kumar et al. 1995, Szeliski and Kang 1995, Scharstein and Szeliski 2002), which may not be
possible if the images only contain partial overlap. In thatcase, it may be necessary to correct

for parallax only in the overlap areas, which can be accomplished using aMulti-Perspective Plane

Sweep(MPPS) algorithm (Uyttendaeleet al.2004, Kanget al.2004).
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When the motion in the scene is very large, i.e., when objectsappear and disappear completely,
a sensible solution is to simplyselectpixels from only one image at a time as the source for the

final composite (Milgram 1977, Davis 1998, Agarwalaet al.2004), as discussed in§6.2. However,
when the motion is reasonably small (on the order of a few pixels), general 2-D motion estimation

(optic flow) can be used to perform an appropriate correctionbefore blending using a process called
local alignment(Shum and Szeliski 2000, Kanget al.2003). This same process can also be used
to compensate for radial distortion and 3D parallax, although it uses a weaker motion model than

explicitly modeling the source of error, and may therefore fail more often or introduce unwanted
distortions.

The local alignment technique introduced by Shum and Szeliski (2000) starts with the global
bundle adjustment (139) used to optimize the camera poses. Once these have been estimated,

the desiredlocation of a 3D pointxi can be estimated as theaverageof the back-projected 3D
locations,

xi ∼
∑

j

cijx̃i(x̂ij; Rj , fj), (143)

which can be projected into each imagej to obtain atarget locationxij . The difference between

the target locationsxij and the original featuresxij provide a set of local motion estimates

uij = xij − xij, (144)

which can be interpolated to form a dense correction fielduj(xj). In their system, Shum and

Szeliski (2000) use aninverse warpingalgorithm where the sparse−uij values are placed at the
new target locationsxij , interpolated using bilinear kernel functions (Nielson 1993) and then added

to the original pixel coordinates when computing the warped(corrected) image. In order to get a
reasonably dense set of features to interpolate, Shum and Szeliski (2000) place a feature point at

the center of each patch (the patch size controls the smoothness in the local alignment stage), rather
than relying of features extracted using an interest operator.

An alternative approach to motion-based de-ghosting was proposed by Kanget al.(2003), who

estimate dense optical flow between each input image and a central referenceimage. The accuracy
of the flow vector is checked using a photo-consistency measure before a given warped pixel is

considered valid and therefore used to compute a high dynamic range radiance estimate, which
is the goal of their overall algorithm. The requirement for having a reference image makes their

approach less applicable to general image mosaicing, although an extension to this case could
certainly be envisaged.

5.3 Recognizing panoramas

The final piece needed to perform fully automated image stitching is a technique to recognize
which images actually go together, which Brown and Lowe (2003) call recognizing panoramas. If
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the user takes images in sequence so that each image overlapsits predecessor and also specifies
the first and last images to be stitched, bundle adjustment combined with the process oftopology

inferencecan be used to automatically assemble a panorama (Sawhney and Kumar 1999). How-
ever, users often jump around when taking panoramas, e.g., they may start a new row on top of

a previous one, or jump back to take a repeated shot, or create360◦ panoramas where end-to-end
overlaps need to be discovered. Furthermore, the ability todiscover multiple panoramas taken by
a user over an extended period of time can be a big convenience.

To recognize panoramas, Brown and Lowe (2003) first find all pairwise image overlaps using
a feature-based method and then find connected components inthe overlap graph to “recognize”

individual panoramas (Figure ???).[ Note: Add figure here from (Brown and Lowe 2003), then

ask Matt Brown if it’s o.k. ]The feature-based matching stage first extracts SIFT feature locations

and feature descriptors (Lowe 2004) from all the input images and then places these in an indexing
structure, as described in§4.2. For each image pair under consideration, the nearest matching

neighbor is found for each feature in the first image, using the indexing structure to rapidly find
candidates, and then comparing feature descriptors to find the best match. RANSAC is then used
to find a set ofinlier matches, using a pairs of matches to hypothesize a similarity motion model

that is then used to count the number of inliers.
[ Note: The following still needs to be written:

In practice, may be erroneous matches, need a way to “back out” or make the process more

robust.

Show example where solution is ambiguous: Doorway w/ tree orcathedral with windows vs.

moving persons ]

6 Compositing

Once we have registered all of the input images with respect to each other, we need to decide how
to produce the final stitched (mosaic) image. This involves selecting a final compositing surface
(flat, cylindrical, spherical, etc.) and view (reference image). It also involves selecting which pixels

contribute to the final composite and how to optimally blend these pixels to minimize visible seams,
blur, and ghosting.

In this section, I review techniques that address these problems, namely compositing surface
parameterization, pixel/seam selection, blending, and exposure compensation. My emphasis is

on fully automatedapproaches to the problem. Since the creation of high-quality panoramas and
composites is as much anartistic endeavor as a computational one, various interactive toolshave
been developed to assist this process, e.g., (Agarwalaet al. 2004, Li et al. 2004a, Rotheret al.

2004), which I will not cover, except where they provide automated solutions to our problems.
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6.1 Choosing a compositing surface

The first choice to be made is how to represent the final image. If only a few images are stitched

together, a natural approach is to select one of the images asthe referenceand to then warp all
of the other images into the reference coordinate system. The resulting composite is called aflat

panorama, since the projection onto the final surface is still a perspective projection, and hence
straight lines remain straight (which is often a desirable attribute).

For larger fields of view, however, we cannot maintain a flat representation without excessively
stretching pixels near the border of the image. (In practice, flat panoramas start to look severely dis-

torted once the field of view exceeds90◦ or so.) The usual choice for compositing larger panoramas
is to use a cylindrical (Szeliski 1994, Chen 1995) or spherical (Szeliski and Shum 1997) projection,
as described in§2.3. In fact, any surface used forenvironment mappingin computer graphics can

be used, including acube mapthat represents the full viewing sphere with the six square faces of
a box (Greene 1986, Szeliski and Shum 1997). Cartographers have also developed a number of

alternative methods for representing the globe[ Note: find a reference here; ask MattU? ].
The choice of parameterization is somewhat application dependent, and involves a tradeoff

between keeping the local appearance undistorted (e.g., keeping straight lines straight) and provid-
ing a reasonably uniform sampling of the environment. Automatically making this selection and

smoothly transitioning between representations based on the extent of the panorama is an interest-
ing topic for future research.

View selection. Once we have chosen the output parameterization, we still need to determine

which part of the scene will becenteredin the final view. As mentioned above, for a flat composite,
we can choose one of the images as a reference. Often, a reasonable choice is the one that is
geometrically most central. For example, for rotational panoramas represented as a collection

of 3D rotation matrices, we can choose the image whosez-axis is closest to the averagez-axis
(assuming a reasonable field of view). Alternatively, we canuse the averagez-axis (or quaternion,

but this is trickier) to define the reference rotation.
For larger (e.g., cylindrical or spherical) panoramas, we can still use the same heuristic if a

subset of the viewing sphere has been imaged. If the case of full 360◦ panoramas, a better choice
might be to choose the middle image from the sequence of inputs, or sometimes the first image,
assuming this contains the object of greatest interest. In all of these cases, having the user control

the final view is often highly desirable. If the “up vector” computation described in§5.1 is working
correctly, this can be as simple as panning over the image or setting a vertical “center line” for the

final panorama. [ Note: Add a figure here showing the difference before and after up vector

estimation. ]
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Coordinate transformations. Once we have selected the parameterization and reference view,
we still need to compute the mappings between the input and output pixels coordinates.

If the final compositing surface is flat (e.g., a single plane or the face of a cube map) and the
input images have no radial distortion, the coordinate transformation is the simple homography

described by (19). This kind of warping can be performed in graphics hardware by appropriately
setting texture mapping coordinates and rendering a singlequadrilateral.

If the final composite surface has some other analytic form (e.g., cylindrical or spherical), we

need to convert every pixel in the final panorama into a viewing ray (3D point) and then map
it back into each image according to the projection (and optionally radial distortion) equations.

This process can be made more efficient by precomputing some lookup tables, e.g., the partial
trigonometric functions needed to map cylindrical or spherical coordinates to 3D coordinates, or

the radial distortion field at each pixel. It is also be possible to accelerate this process by computing
exact pixel mappings on a coarser grid and then interpolating these values. An efficient way to

roughly know which portions of the final panorama are coveredby which input images can also be
helpful.

When the final compositing surface is a texture-mapped polyhedron, a slightly more sophis-

ticated algorithm must be used (Szeliski and Shum 1997). Notonly do the 3D and texture map
coordinates have to be properly handled, but a small amount of overdrawoutside of the triangle

footprints in the texture map is necessary, to ensure that the texture pixels being interpolated during
3D rendering have valid values.

Sampling issues. While the above computations can yield the correct (fractional) pixel addresses

in each input image, we still need to pay attention to sampling issues. For example, if the final
panorama has a lower resolution than the input images, pre-filtering the input images is neces-

sary to avoid aliasing. These issues have been extensively studied in both the image processing
and computer graphics communities. The basic problem is to compute the appropriate pre-filter,
which depends on the distance (and arrangement) between neighboring samples in a source image.

Various approximate solutions, such as MIP mapping (Williams 1983) or elliptically weighted
Gaussian averaging (Greene and Heckbert 1986) have been developed in the graphics commu-

nity. For highest visual quality, a higher order (e.g., cubic) interpolator combined with a spatially
adaptive pre-filter may be necessary (Wanget al.2001). Under certain conditions, it may also be

possible to produce images with a higher resolution than theinput images using a process called
super-resolution(§7).
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Figure 9: Final composites computed by a variety of algorithms: (a) average, (b) median, (c) feathered

average, (d)p-normp =?, (e) Vornoi, (f) weighted ROD vertex cover with feathering,(g) graph cut seams,

(h) graph cut seams with Poisson blending.

6.2 Pixel selection and weighting

Once the source pixels have been mapped onto the final composite surface, we must still decide
how to blend them in order to create an attractive looking panorama. If all of the images are in

perfect registration and identically exposed, this is an easy problem (any pixel or combination
will do). However, for real images, visible seams (due to exposure differences), blurring (due to

mis-registration), or ghosting (due to moving objects) canoccur.
Creating clean, pleasing looking panoramas involves both deciding which pixels to use and

how to weight or blend them. The distinction between these two stages is a little fluid, since per-

pixel weighting can be though of as a combination of selection and blending. In this section, I
discuss spatially varying weighting, pixel selection (seam placement), and then more sophisticated

blending.

Feathering and center-weighting. The simplest way to create a final composite is to simply
take anaveragevalue at each pixel,

C(x) =
∑

k

wk(x)Ĩk(x)

/

∑

k

wk(x) , (145)

whereĨk(x) are thewarped(re-sampled) images andwk(x) is 1 at valid pixels and 0 elsewhere.

On computer graphics hardware, this kind of summation can beperformed in anaccumulation

buffer(using theA channel as the weight).

Simple averaging usually does not work very well, since exposure differences, mis-registra-
tions, and scene movement are all very visible (Figure 9a). If rapidly moving objects are the only

problem, taking amedianfilter (which is a kind of pixel selection operator) can oftenbe used
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to remove them (Irani and Anandan 1998) (Figure 9b). Conversely, center-weighting (discussed
below) andminimum likelihoodselection (Agarwalaet al.2004) can sometimes be used to retain

multiple copies of a moving object.[ Note: Insert the figure with the moving snowboarder? ]

A better approach to averaging is to weight pixels near the center of the image more heavily and

to down-weight pixels near the edges. When an image has some cutout regions, down-weighting
pixels near the edges of both cutouts and edges is preferable. This can be done by computing a
distance mapor grassfire transform,

wk(x) =

∥

∥

∥

∥

∥

arg min
y
{‖y‖ | Ĩk(x + y) is invalid}

∥

∥

∥

∥

∥

, (146)

where each valid pixel is tagged with its Euclidean distanceto the nearest invalid pixel. The
Euclidean distance map can be efficiently computed using a two-pass raster algorithm (Danielsson

1980, Borgefors 1986). Weighted averaging with a distance map is often calledfeathering(Szeliski
and Shum 1997, Uyttendaeleet al. 2001), and does a reasonable job of blending over exposure
differences. However, blurring and ghosting can still be problems (Figure 9c). Note that weighted

averaging isnot the same as compositing the individual images with the classic over operation
(Porter and Duff 1984, Blinn 1994), even when using the weight values (normalized to sum up

to one) asalpha(translucency) channels. This is because the over operation attenuates the values
from more distant surfaces, and hence is not equivalent to a direct sum.

One way to improve feathering is to raise the distance map values to some large power, i.e.,
to usewp

k(x) in (145). The weighted averages then become dominated by thelarger values, i.e.,

they act somewhat like ap-norm. The resulting composite can often provide a reasonable tradeoff
between visible exposure differences and blur (Figure 9d).

In the limit asp→∞, only the pixel with the maximum distance value gets selected,

C(x) = Ĩl(x)(x), (147)

where

l = arg max
k

wk(x) (148)

is the label assignmentor pixel selectionfunction that selects which image to use at each pixel.
This hard pixel selection process produces a visibility mask-sensitive variant of the familiarVornoi

diagram, which assigns each pixel to the nearest image center in the set (Woodet al.1997, Peleg
et al. 2000). The resulting composite, while useful for artistic guidance and in high-overlap
panoramas (manifold mosaics) tends to have very hard edges with noticeable seams when the

exposures vary (Figure 9e).
Xiong and Turkowski (1998) use this Vornoi idea (local maximum of the grassfire transform)

to select seams for Laplacian pyramid blending (which is discussed below). However, since the
seam selection is performed sequentially as new images are added in, some artifacts can occur.
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Optimal seam selection. Computing the Vornoi diagram is one way to select theseamsbetween
regions where different images contribute to the final composite. However, Vornoi images totally

ignore the local image structure underlying the seam.
A better approach is to place the seams in regions where the images agree, so that transitions

from one source to another are not visible. In this way, the algorithm avoids “cutting through”
moving objects, where a seam would look unnatural (Davis 1998). For a pair of images, this
process can be formulated as a simple dynamic program starting from one (short) edge of the

overlap region and ending at the other (Milgram 1975, Milgram 1977, Davis 1998, Efros and
Freeman 2001).

When multiple images are being composited, the dynamic program idea does not readily gen-
eralize. (For square texture tiles being composited sequentially, Efros and Freeman (2001) run a

dynamic program along each of the four tile sides.)
To overcome this problem, Uyttendaeleet al. (2001) observed that for well-registered images,

moving objects produce the most visible artifacts, namely translucent lookingghosts. Their system
therefore decides which objects to keep, and which ones to erase. First, the algorithm compares
all overlapping input image pairs to determineregions of difference(RODs) where the images

disagree. Next, a graph is constructed with the RODs as vertices and edges representing ROD
pairs that overlap in the final composite.[ Note: Add a figure here, taken from the paper. ]Since

the presence of an edge indicates an area of disagreement, vertices (regions) must be removed from
the final composite until no edge spans a pair of unremoved vertices. The smallest such set can be

computed using avertex coveralgorithm. Since several such covers may exist, aweighted vertex

cover is used instead, where the vertex weights are computed by summing the feather weights in
the ROD (Uyttendaeleet al.2001). The algorithm therefore prefers removing regions that are near

the edge of the image, which reduces the likelihood that objects which are only partially visible
will appear in the final composite. Once the required regionsof difference have been removed, the

final composite is created using a feathered blend (Figure 9f).
A different approach to pixel selection and seam placement was recently proposed by Agarwala

et al. (2004). Their system computes the label assignment that optimizes the sum of two objective
functions. The first is a per-pixelimage objectivethat determines which pixels are likely to produce

good composites,
CD =

∑

x
Dl(x)(x), (149)

whereDl(x)(x) is thedata penaltyassociated with choosing imagel at pixelx. In their system,
users can select which pixels to use by “painting” over an image with the desired object or appear-

ance, which setsD(x, l) to a large value for all labelsl other than the one selected by the user.
Alternatively, automated selection criteria can be used, such asmaximum likelihoodthat prefers

pixels which occur repeatedly (for object removal), orminimum likelihoodfor objects that occur
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infrequently (for greatest object retention).
The second term is aseam objectivethat penalizes differences in labelings between adjacent

images,
CS =

∑

(x,y)∈N

Sl(x),l(y)(x,y) (150)

whereSl(x),l(y)(x,y) is the image-dependentinteraction penaltyor seam costof placing a seam
between pixelsx andy, andN is the set ofN4 neighboring pixels. For example, the simple

color-based seam penalty used in (Kwatraet al.2003, Agarwalaet al.2004) can be written as

Sl(x),l(y)(x,y) = ‖Ĩl(x)(x)− Ĩl(y)(x)‖+ ‖Ĩl(x)(y)− Ĩl(y)(y)‖. (151)

More sophisticated seam penalties can also look at image gradients or the presence of image edges
(Agarwalaet al.2004). Seam penalties are widely used in other computer vision applications such

as stereo matching (Boykovet al.2001) to give the labeling function itscoherenceor smoothness.
The sum of the two objective functions is often called theMarkov Random Field(MRF) energy,

since it arises as the negative log-likelihood of an MRF distribution (Geman and Geman 1984). For
general energy functions, finding the minimum can be NP-hard(Boykov et al. 2001). However,

a variety of approximate optimization techniques have beendeveloped over the years, including
simulated annealing(Geman and Geman 1984), graph cuts (Boykovet al.2001), and loopy belief
propagation (Tappen and Freeman 2003). Both Kwatraet al. (2003) and Agarwalaet al. (2004)

use graph cuts, which involves cycling through a set of simplerα-expansionre-labelings, each of
which can be solved with a graph cut (max-flow) polynomial-time algorithm (Boykovet al.2001).

For the result shown in Figure 9g, Agarwalaet al. (2004) use a large data penalty for invalid
pixels and 0 for valid pixels. Notice how the seam placement algorithm avoids regions of differ-

ences, including those that border the image and which mightresult in cut off objects. Graph cuts
(Agarwalaet al. 2004) and vertex cover (Uyttendaeleet al. 2001) often produce similar looking

results, although the former is significantly slower since it optimizes over all pixels, while the latter
is more sensitive to the thresholds used to determine regions of difference.

6.3 Blending

Once the seams have been placed and unwanted object removed,we still need to blend the images

to compensate for exposure differences and other mis-alignments. The spatially-varying weighting
(feathering) previously discussed can often be used to accomplish this. However, it is difficult in

practice to achieve a pleasing balance between smoothing out low-frequency exposure variations
and retaining sharp enough transitions to prevent blurring(although using a high exponent does
help).
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Laplacian pyramid blending. An attractive solution to this problem was developed by Burtand
Adelson (1983). Instead of using a single transition width,a frequency-adaptive width is used

by creating a band-pass (Laplacian) pyramid and making the transition widths a function of the
pyramid level. The process operates as follows.

First, each warped image is converted into a band-pass (Laplacian) pyramid, which involves
smoothing each level with a1/16(1, 4, 6, 4, 1) binomial kernel, subsampling the smoothed image by
a factor of 2, and subtracting the reconstructed (low-pass)image from the original. This creates a

reversible, overcomplete representation of the image signal. Invalid and edge pixels are filled with
neighboring values to make this process well defined.

Next, themask(valid pixel) image associated with each source image is converted into a low-
pass (Gaussian) pyramid. These blurred and subsampled masks become the weights used to per-

form a per-level feathered blend of the band-pass source images.
Finally, the composite image is reconstructed by interpolating and summing all of the pyramid

levels (band-pass images). The result of applying this pyramid blending is shown in Figure ?.[
Note: Need to add a figure here. ]

Gradient domain blending. An alternative approach to multi-badn image blending is to perform

the operations in thegradient domain. Reconstructing images from their gradient fields has a long
history in computer vision (Horn 1986), starting originally with work in brightness constancy
(Horn 1974), shape from shading (Horn and Brooks 1989), and photometric stereo (Woodham

1981). More recently, related ideas have been used for reconstructing images from their edges
(Elder and Golderg 2001), removing shadows from images (Weiss 2001), andtone mappinghigh

dynamic range images by reducing the magnitude of image edges (gradients) (Fattalet al.2002).
Pérezet al. (2003) showed how gradient domain reconstruction can be used to do seamless

object insertion in image editing applications. Rather than copying pixels, thegradientsof the
new image fragment are copied instead. The actual pixel values for the copied image are then
computed by solving aPoisson equationthat locally matches the gradients while obeying the

fixed Dirichlet (exact matching) conditions at the seam boundary. Pérezet al. (2003) show that
this is equivalent to computing an additivemembraneinterpolant of the mismatch between the

source and destination images along the boundary. (The membrane interpolant is known to have
nicer interpolation properties for arbitrary-shaped constraints than frequency-domain interpolants

(Nielson 1993).) In prior work, Peleg (1981) also proposed adding a smooth function to force a
consistency along the seam curve.

Agarwalaet al. (2004) extended this idea to a multi-source formulation, where it no longer
makes sense to talk of a destination image whose exact pixel values must be matched at the seam.
Instead,eachsource image contributes its own gradient field, and the Poisson equation is solved

usingNeumannboundary conditions, i.e., dropping any equations that involve pixels outside the
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boundary of the image.
Rather than solving the Poisson partial differential equations, Agarwalaet al. (2004) directly

minimizevariational problem,

min
C(x)
‖∇C(x)−∇Ĩl(x)(x)‖2. (152)

The discretized form of this equation is a set of gradient constraint equations

C(x + ı̂)− C(x) = Ĩl(x)(x + ı̂)− Ĩl(x)(x) and (153)

C(x + ̂)− C(x) = Ĩl(x)(x + ̂)− Ĩl(x)(x), (154)

whereı̂ = (1, 0) and ̂ = (0, 1) are unit vectors in thex andy directions.20 They then solve the
associated sparse least squares problem. Since this systemof equations is only defined up to an

additive constraint, Agarwalaet al.(2004) ask the user to select the value of one pixel. In practice,
a better choice might be to weakly bias the solution towards reproducing the original color values.

In order to accelerate the solution of this sparse linear system, (Fattalet al. 2002) use multi-

grid, whereas (Agarwalaet al. 2004) have recently been using hierarchical basis preconditioned
conjugate gradient descent (Szeliski 1990). The resultingseam blending work very well in practice

(Figure 9h), although care must be taken when copying large gradient values near seams so that a
“double edge” is not introduced.

Copying gradients directly from the source images after seam placement is just one approach
to gradient domain blending. The paper by Levinet al. (2004) examines several different variants
on this approach, which they callGradient-domain Image STitching(GIST). The techniques they

examine include feathering (blending) the gradients from the source images, as well as using an
L1 norm in performing the reconstruction of the image from the gradient field, rather than using

an L2 norm as in (152). Their preferred technique is the L1 optimization of a feathered (blended)
cost function on the original image gradients (which they call GIST1-l1). While L1 optimization

using linear programming can be slow, a faster iterative median-based algorithm in a multigrid
framework works well in practice. Visual comparisons between their preferred approach and what

they calloptimal seam on the gradients(which is equivalent to Agarwalaet al. (2004)’s approach)
show similar results, while significantly improving on pyramid blending and feathering algorithms.

Exposure compensation. Pyramid and gradient domain blending can do a good job of compen-
sating for moderate amounts of exposure differences between images. However, when the exposure

differences become large, alternative approaches may be necessary.
Uyttendaeleet al. (2001) iteratively estimate a local correction between each source image

and a blended composite. First, a block-based quadratic transfer function is fit between each

20At seam locations, the right hand side is replaced by the average of the gradients in the two source images.
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source image and an initial feathered composite. Next, transfer functions are averaged with their
neighbors to get a smoother mapping, and per-pixel transferfunctions are computed bysplining

between neighboring block values. Once each source image has been smoothly adjusted, a new
feathered composite is computed, and the process is be repeated (typically 3 times). The results

in (Uyttendaeleet al.2001) demonstrate that this does a better job of exposure compensation than
simple feathering, and can handle local variations in exposure due to effects like lens vignetting.

High dynamic range imaging. A more principled approach to exposure compensation is to

estimate a singlehigh dynamic range(HDR) radiance map from of the differently exposed images
(Mann and Picard 1995, Debevec and Malik 1997, Mitsunaga andNayar 1999). All of these papers

assume that the input images were taken with a fixed camera whose pixel values

Ik(x) = f(ckR(x); p) (155)

are the result of applying a parameterizedradiometric transfer functionf(R,p) to scaled radi-

ance valuesckR(x). The exposure valuesck are either known (by experimental setup, or from a
camera’s EXIF tags), or are computed as part of the fitting process.

The form of the parametric function differs in each of these papers. Mann and Picard (1995)

use a three-parameterf(R) = α+βRγ function, Debevec and Malik (1997) use a thin-plate cubic
spline, while Mitsunaga and Nayar (1999) use a low-order (N ≤ 10) polynomial for theinverseof

the transfer function.
To blend the estimated (noisy) radiance values into a final composite, Mann and Picard (1995)

use a hat function (accentuating mid-tone pixels), Debevecand Malik (1997) use the derivative of
the response function, while Mitsunaga and Nayar (1999) optimize the signal-to-noise ratio (SNR),
which emphasizes both higher pixel values and larger gradients in the transfer function.

Once a radiance map has been computed, it is usually necessary to display it on a lower gamut
(i.e., 8-bit) screen or printer. A variety oftone mappingtechniques have been developed for this

purpose, which involve either computing spatially varyingtransfer functions or reducing image
gradients to fit the the available dynamic range (Fattalet al. 2002, Durand and Dorsey 2002,

Reinhardet al.2002)
Unfortunately, casually acquired images may not be perfectly registered and may contain mov-

ing objects. Kanget al. (2003) present an algorithm that combines global registration with local
motion estimation (optic flow) to accurately align the images before blending their radiance esti-
mates. Since the images may have widely different exposures, care must be taken when producing

the motion estimates, which must themselves be checked for consistency to avoid the creation of
ghosts and object fragments.

Even this approach, however, may not work when the camera is simultaneously undergoing
large panning motions and exposure changes, which is a common occurrence in casually acquired
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panoramas. Under such conditions, different parts of the image may be seen at one or more expo-
sures. Devising a method to blend all of these different sources while avoiding sharp transitions

and dealing with scene motion is a challenging open researchproblem.
In the long term, the need to compute high dynamic range images from multiple exposures

may be eliminated by advances in camera sensor technology (Nayar and Mitsunaga 2000, Kanget

al. 2003). However, the need to blend such images and to tone map them to a pleasing final result
will likely remain.

7 Extensions and open issues

Multiple resolutions (zoom) and super-resolution (Kerenet al.1988, Irani and Peleg 1991, Cheese-
manet al. 1993, Mann and Picard 1994, Chiang and Boult 1996, Bascleet al. 1996, Capel and

Zisserman 1998, Capel and Zisserman 2000, Capel and Zisserman 2001, Smelyanskiyet al.2000).
Video stitching (Irani and Anandan 1998); adding temporal elements (Sarnoff’s mosaics with

video (Lamplight?)); VideoBrush (Sawhneyet al. 1998); see also Salient Stills (Teodosio and
Bender 1993)) or (Massey & Bender, IBM Systems Journal 1996).

Peleg’s manifold mosaics (Peleget al. 2000) and stereo mosaics (where)? Strip mosaics for
artistic rendering and multi-plane pan (Woodet al. 1997). Multi-center-of-projection images
(Rademacher and Bishop 1998).

3-D parallax (Kumaret al.1995).
Concentric mosaics (Shum and He 1999, Shum and Szeliski 1999, Li et al.2004b).

Other applications: document scanning with a mouse (Nakaoet al. 1998); retinal image mo-
saics (Canet al.2002).

Open issues. How to really make these things work automatically: repeated pattern, matching

subsets, moving objects, parallax. Hard to get the last 3%. (Mention internal test data suite,
shipping in product.)

Automated object removal: like intelligent PhotoMontage (semantic stitching, photographer’s
assistant)

Large parallax: need to do 3D reconstruction. But, not possible if no overlap in some regions
(MPPS gets around this with a hack). Ideally, want 70% overlap to tie inter-frame motions strongly
together (also for better blending). Video-rate cameras with on-board stitching may some day solve

this...
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