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Robust Visual Motion Analysis: Robust Visual Motion Analysis: 
PiecewisePiecewise--Smooth Optical FlowSmooth Optical Flow
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What Is Visual MotionWhat Is Visual Motion

2D image velocity
3D motion projection
Temporal correspondence
Image deformation

Optical flow
An image of 2D velocity
Each pixel Vs=(x,y) = (us,vs)
where us and vs are the 

displacements in x and y.

(x,y,t) (x+u,y+v,t+1)

Structure From MotionStructure From Motion

Estimated horizontal motionRigid scene + camera translation

Depth map

Scene Dynamics UnderstandingScene Dynamics Understanding

Surveillance
Event analysis
Video compression

Estimated horizontal motion

Motion smoothness

Brighter 
pixels =>
larger
speeds.

Motion
boundaries
are smooth.

Target Detection and TrackingTarget Detection and Tracking

A tiny airplane --- only 
observable by its distinct 
motion

Tracking results

Optical Flow Optical Flow Estimation:BasicsEstimation:Basics

Template matching

Assumptions:
Brightness conservation
Flow smoothness

Difficulties:
Aperture problem (local information insufficient)
Outliers (motion boundaries, abrupt image noise)

red square: homogenous area (extreme case, motion completely ambiguous)
green square: directionally homogenous (motion parallel to the edge ambiguous)
yellow square: good template (little ambiguity) In Slide Show, you’ll see the content in the 2 yellow squares matching
blue square: motion discontinuity
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Results from Prior Methods:Results from Prior Methods:
LS = Least Squares, LSLS = Least Squares, LS--R = Robust Least Squares, R = new robust methodR = Robust Least Squares, R = new robust method

Sampled by2:  True         LS-LS          LS-R             R-R       Confidence

Horizontal flow:   M-OFC      LS-LMedS        LS-R              R-R

LS = Least Squares, LSLS = Least Squares, LS--R = Robust Least Squares, R = new robust methodR = Robust Least Squares, R = new robust method

MM--OFC  = solving the optical flow constraint using the MOFC  = solving the optical flow constraint using the M--EstimatorEstimator
LMedSLMedS = Least Median of Squares= Least Median of Squares

Estimating PiecewiseEstimating Piecewise--Smooth Optical Smooth Optical 
Flow with Global Matching and Flow with Global Matching and 

Graduated OptimizationGraduated Optimization

A Bayesian Approach

Problem StatementProblem Statement

Assuming only brightness conservation
and piecewise-smooth motion, find the 
optical flow to best describe the 
intensity change in three frames.

Approach: MatchingApproach: Matching--Based Based 
Global OptimizationGlobal Optimization

• Step 1.   Robust local gradient-based method for 
high-quality initial flow estimate.

• Step 2.   Global gradient-based method to improve the
flow-field coherence.

• Step 3.   Global matching that minimizes energy by a 
greedy approach.

Global Energy DesignGlobal Energy Design

Global energy

Matching error
Warping error

Smoothness error
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V is the optical flow field. V   is the optical flow
at pixel s.

E    is the brightness
conservation.

E   is the flow smoothness
error in a neighborhood
about pixel s.

I   and I   are prev & next frame; I   (V   ) is the warped intensity in prev frame.
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Step 1: GradientStep 1: Gradient--Based Local RegressionBased Local Regression

• A crude flow estimate is assumed available
(and has been compensated for)

• A robust gradient-based local regression is used
to compute the incremental flow ∆V.

• The dominant translational motion in the 
neighborhood of each pixel is computed
by solving a set of flow equations using a 
least-median-of-squares criterion.
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Step 2: GradientStep 2: Gradient--Based Global Based Global 
OptimizationOptimization

• The coherence of ∆V using a gradient-based global
optimization method. 

• The energy to minimize is given by

where e   is the residual of the OFC,
V   is the ith vector of the initial flow, and 
the sigmas are parameters. 
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Step 3: Global MatchingStep 3: Global Matching

• The new flow estimate still exhibits gross errors at 
motion boundaries and other places with poor
gradient estimates.  

• This error is reduced by solving the matching-based
formulation equation through greedy propagation.

• The energy is calculated for all pixels.

• Then each pixel is visited, examining whether a trial
estimate from the candidates in its neighborhood
is better (lower energy).  If so, this becomes the
new estimate for that pixel.  This is repeated iteratively.

Overall AlgorithmOverall Algorithm

Image pyramid
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Calculate gradients
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Global matching
pV2

Projection

Level p

Level p-1

Local OFC

p
wI∇

Global OFC
pV1∆

pV1

AdvantagesAdvantages

Best of Everything
Local OFC

High-quality initial flow estimates
Robust local scale estimates

Global OFC
Improve flow smoothness

Global Matching
The optimal formulation
Correct errors caused by poor gradient quality and 
hierarchical process

Results: fast convergence, high accuracy, 
simultaneous motion boundary detection

ExperimentsExperiments

• Experiments were run on several standard test videos.

• Estimates of optical flow were made for the middle
frame of every three.

• The results were compared with the Black and
Anandan algorithm.

TS: Translating SquaresTS: Translating Squares

Homebrew, ideal setting, test performance 
upper bound

64x64, 1pixel/frame

Groundtruth (cropped),
Our estimate looks the same
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TS: Flow Estimate PlotsTS: Flow Estimate Plots

LS BA S1 (S2 is close)

S3 looks the same as the groundtruth.

S1, S2, S3: results from our Step I, II, III (final)

TT: Translating TreeTT: Translating Tree

150x150 (Barron 94)

BA    2.60     0.128    0.0724
S3     0.248   0.0167  0.00984

)(o∠e )(pix||•e )(pixe BA
S3

e: error in pixels, cdf: culmulative distribution function for all pixels

DT: Diverging TreeDT: Diverging Tree

150x150 (Barron 94)

BA    6.36      0.182      0.114
S3     2.60      0.0813    0.0507

)(o∠e )(pix||•e )(pixe BA
S3

YOS: Yosemite FlyYOS: Yosemite Fly--ThroughThrough

BA    2.71      0.185      0.118
S3     1.92      0.120      0.0776

)(o∠e )(pix||•e )(pixe
BA
S3

316x252 (Barron, cloud excluded)

TAXI: Hamburg TaxiTAXI: Hamburg Taxi

256x190, (Barron 94)
max speed 3.0 pix/frame

LMS BA

Error map Smoothness errorOurs

TrafficTraffic

512x512
(Nagel)

max speed:
6.0 pix/frame

BA

Error map Smoothness errorOurs
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Pepsi CanPepsi Can

201x201
(Black)

Max speed:
2pix/frame

BA

Ours

Smoothness
error

FG: Flower GardenFG: Flower Garden

360x240 (Black)
Max speed: 7pix/frame

BA LMS

Error map Smoothness errorOurs

Contributions (1/2)Contributions (1/2)

Formulation
More complete design, minimal parameter tuning

Adaptive local scales
Strength of two error terms automatically balanced

3-frame matching to avoid visibility problems
Solution: 3-step optimization

Robust initial estimates and scales
Model parameter self-learning
Inherit merits of 3 methods and overcome 
shortcomings

Contributions (2/2)Contributions (2/2)

Results
High accuracy
Fast convergence
By product: motion boundaries

Significance
Foundation for higher-level (model-based) visual 
motion analysis
Methodology applicable to other low-level vision 
problems


