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What IsVisual Motion

= 2D image velocity
3D motion projection
Temporal correspondence
Image deformation

= Optical flow
An image of 2D velocity
Each pixel Vs=(x,y) = (Us,Vs)
where Us and Vs are the

displacements in x and y.
(xy.t) & (x+uy+v,t+l)

Structure From Motion

Rigid scene + camera translation Estimated horizontal motion

’

Depth map

Scene Dynamics Under standing

Brighter
pixels =>
larger
speeds.

Estimated horizontal motion
Surveillance
Event analysis
Video compression

Motion
boundaries
are smooth.

Motion smoothness

Target Detection and Tracking

A tiny airplane --- only
observable by its distinct Tracking results
motion

Optical Flow Estimation:Basics

= Template matching

= Assumptions:
Brightness conservation
Flow smoothness

= Difficulties:

Aperture problem (local information insufficient)
Outliers (motion boundaries, abrupt image noise)

red square: homogenous area (extreme case, motion completely ambiguous)
green square: directionally homogenous (motion parallel to the edge ambiguous)




Resultsfrom Prior M ethods:

LS=Least Squares, LS-R = Robust L east Squares, R = new robust method

Sampled by2: True LS-LS LS-R R-R Confidence
LS=Least Squares, LS-R = Robust Least Squares, R = new robust method

Horizontal flow: M-OFC LS-LMedS LS-R R-R

M-OFC = solving the optical flow constraint using the M -Estimator
LMedS= Least Median of Squares

Estimating Piecewise-Smooth Optical
Flow with Global Matching and
Graduated Optimization

A Bayesian Approach

Problem Statement

Assuming only brightness conservation
and piecewise-smooth motion, find the
optical flow to best describe the
intensity change in three frames.

Approach: Matching-Based
Global Optimization

* Step 1. Robust local gradient-based method for
high-quality initial flow estimate.

* Step 2. Global gradient-based method to improve the
flow-field coherence.

» Step 3. Global matching that minimizes energy by a
greedy approach.

Global Energy Design
Vg is the optical flow

at pixel s.
= Global energy E= > E,(V.)+Es(V.)
alsitess

. E g is the brightness
- Matchlng error Es(Vs) = p(&y(Vs). 0%)| conservation.

Warping error

&y (Ve) =min(| 17 (V) = I LT (V) =1, )

‘ I” and I" are prev & next frame; I~ (V) is the warped intensity in prev frame. ‘

= Smoothness error

EM) =3 TV, -V, o)

neNg

Es is the flow smoothness
error in a neighborhood
about pixel s.

2
o+ X

Error function:  p(x0)= 3

Step 1: Gradient-Based L ocal Regression

* A crude flow estimate is assumed available

» A robust gradient-based local regression is used
to compute the incremental flow AV.

* The dominant translational motion in the
neighborhood of each pixel is computed
by solving a set of flow equations using a
least-median-of-squares criterion.




Step 2: Gradient-Based Global
Optimization

* The coherence of AV using a gradient-based global
optimization method.

* The energy to minimize is given by

E@V)= 3 {p@(aV.).0n)+5 ¥ PV, +aV, Y, -4V, Lo}

alsitess

where e, is the residual of the OFC,
V, is the ith vector of the initial flow, and
the sigmas are parameters.

Step 3: Global Matching

* The new flow estimate still exhibits gross errors at
motion boundaries and other places with poor
gradient estimates.

« This error is reduced by solving the matching-based
formulation equation through greedy propagation.

* The energy is calculated for all pixels.

* Then each pixel is visited, examining whether a trial
estimate from the candidates in its neighborhood
is better (lower energy). If so, this becomes the
new estimate for that pixel. This is repeated iteratively.

Overall Algorithm
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Advantages

= Best of Everything
Local OFC
= High-quality initial flow estimates
= Robust local scale estimates
Global OFC
= Improve flow smoothness
Global Matching
= The optimal formulation
= Correct errors caused by poor gradient quality and
hierarchical process
= Results: fast convergence, high accuracy,
simultaneous motion boundary detection

Experiments

« Experiments were run on several standard test videos.

« Estimates of optical flow were made for the middle
frame of every three.

* The results were compared with the Black and
Anandan algorithm.

TS: Trandating Squares

= Homebrew, ideal setting, test performance
upper bound

64x64, 1pixel/frame

Groundtruth (cropped),
Our estimate looks the same




TS: Flow Estimate Plots

LS - BA S1(S2is close)

S3 looks the same as the groundtruth.

= S1, S2, S3: results from our Step I, I, 1II (final)

TT: Trandating Tree

= \ N
150x150 (Barron 94) L
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BA | 260 0.128 0.0724
S3 | 0.248 0.0167 0.00984 | *
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e: error in pixels, cdf: culmulative distribution function for all pixels

DT: Diverging Tree

150x150 (Barron 94)
e() &) 8

BA [ 6.36 0.182 0.114
S3 | 260 0.0813 0.0507

YOS: Yosemite Fly-Through

316x252 (Barron, cloud excluded) *
e () &) (m)

BA [ 271 0.185 0.118 =
S3 | 1.92 0.120 0.0776 b

TAXI: Hamburg Taxi

256x190, (Barron 94)
max speed 3.0 pix/frame

Ours Error map

Smoothness error

Traffic

512x512

(Nagel)
max speed
6.0 pix/frame

Ours Error map

Smoothness error




Pepsi Can

201x201

(Black)
Max speed:
= 2pix/frame

Ours

Smoothness
error

Contributions (1/2)

= Formulation
More complete design, minimal parameter tuning
= Adaptive local scales
= Strength of two error terms automatically balanced

3-frame matching to avoid visibility problems
= Solution: 3-step optimization

Robust initial estimates and scales

Model parameter self-learning

Inherit merits of 3 methods and overcome
shortcomings

FG: Flower Garden

'

LMS

360x240 (Black)
Max speed: 7pix/frame

1.8

Ours Error map

Smoothness error

Contributions (2/2)

= Results
High accuracy
Fast convergence
By product: motion boundaries
= Significance
Foundation for higher-level (model-based) visual
motion analysis
Methodology applicable to other low-level vision
problems




