Why estimate motion?

Motion Estimation

By Colin
Slides courtesy to Steve Seitz

We live in a 4-D world

Wide applications
« Object Tracking
« Camera Stabilization
* Image Mosaics
« 3D Shape Reconstruction (SFM)
« Special Effects (Match Move)

Optical flow

Problem definition: optical flow

" . .
- .
H(z,y) I(z,y)

How to estimate pixel motion from image H to image 1?

« Solve pixel correspondence problem
— given a pixel in H, look for[nearby]pixels of the[same colo} in |

Key assumptions
« color constancy: a pointin H looks the same in |
— For grayscale images, this is brightness constancy
« small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

{x.y) ‘
displacement = (.)
oLy +u

H(z,y) I(z,y)

Let’s look at these constraints more closely
* brightness constancy: Q: what’s the equation?
H(x, y) = I(x+u, y+v)
« small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of |:
p = . a, ar, 5
I(z~4u, y+v) = I(z, 1/)+mu+@v+h|gher order terms

~I(z,y)+ %u + %v 5

Optical flow equation

Combining these two equations
O=1I(z+u,y+v)— H(z,y)
= I(2,y) + Lew + Iyv — H(zx, y)
= (I(x,y) — H(z.y)) + Lru+ Iyv
Iy + Ipu + Iyv
~ I+ VI [u]

shorthand: I,

In the limit as u and v go to zero, this becomes exact

0=1+VI-[% 3

=
= Oz

Optical flow equation

O=IL+VI-[|uv]
Q: how many unknowns and equations per pixel?
Intuitively, what does this constraint mean?

« The component of the flow in the gradient direction is determined
* The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/barberpole.htm

Aperture problem

Aperture problem

Solving the aperture problem

Basic idea: assume motion field is smooth

Horn & Schunk: add smoothness term
[[+ 91 e 2422w+ 9012) do dy

Lukas & Kanade: assume locally constant motion
« pretend the pixel's neighbors have the same (u,v)
— If we use a 5x5 window, that gives us 25 equations per pixel!

0 =I(py) + VI(p;) [u v]
« works better in practice than Horn & Schunk

Many other methods exist. Here's an overview:

« Barron, J.L., Fleet, D.J., and Beauchemin, S, Performance of optical flow
techniques, International Journal of Computer Vision, 12(1):43-77, 1994.

Lukas-Kanade flow

How to get more equations for a pixel?
« Basicidea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0= I(p) + VI(p;) - [u v]

L(p1) Iy(p1) Ii(p1)
L(p2) Iy(p2) ||u|_ | I(p2)
H H v H
L:(p2s) Iy(p2s) I1(p2s)
A d b
25x2 2x1 25x1

RGB version

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!

0 = L(pp[0.1,2] 4+ VI(p)[0.1,2] - [u v]

I:(p1)[0] Iy(p1)[0] Ii(p1)[0]
L(p)(1] I,(p1)[1] Ii(p1)[1])
L(p[2] I,(p1)[2] [“] Ii(p1)l2]
L:(p25)[0] Iy(pas)[0] | L Ii(p25)[0]
L:(p2s)[1] Ty(p2s)(1] I1(p2s5)([1]
I:(p2s)[2] Iy(p25)(2] Ii(p2s5)[2]
A d b
75x2 2x1 75x1

Lukas-Kanade flow

Prob: we have more equations than unknowns

A d=b ——— minimize ||Ad—1b
25x2 2x1 25x1

12

Solution: solve least squares problem
« minimum least squares solution given by solution (in d) of:

(ATA) d= ATy

2x2 2x1 2x1
SLly Sly|[uw] _ _[SLk
S Ily Sy || v S Iyl
AT A ATp

« The summations are over all pixels in the K x K window
« This technique was first proposed by Lukas & Kanade (1981)
13

Conditions for solvability

« Optimal (u, v) satisfies Lucas-Kanade equation

SLly Sly|[uw] _ _[SLk
S Ily Sy || v S Iyl
AT A ATy

When is This Solvable?
* ATA should be invertible
* ATA should not be too small due to noise
— eigenvalues 1, and %, of ATA should not be too small
* ATA should be well-conditioned
— A/ &, should not be too large (A, = larger eigenvalue)

Eigenvectors of ATA

T, _ | Elely Tledy | _ Iy _ . «d
il [EI..-J}, Yiyhy | T Z Iy (7 1,) = ZVI(?”
Suppose (x,y) is on an edge. What is ATA? derive on board
« gradients along edge all point the same direction
« gradients away from edge have small magnitude

(Cvivn™) = kvivi”
(S vivn™) v = kviPvr
« ¥Iis an eigenvector with eigenvalue |V 1||*
« What's the other eigenvector of ATA?
— let N be perpendicular to ¥ 1

(Cvievn")N =0

— N is the second eigenvector with eigenvalue 0
The eigenvectors of ATA relate to edge direction and magnitude 15

S vivn”
— large gradients, all the same
— large A, small 1,

16

Low texture region

Y vivn’ =
— gradients have small magnitude
—small &, small &,

High textured region

S vivn® N
— gradients are different, large magnitudes
— large 14, large %,

Observation

This is a two image problem BUT
« Can measure sensitivity by just looking at one of the images!
« This tells us which pixels are easy to track, which are hard
— very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
e Suppose ATA is easily invertible
* Suppose there is not much noise in the image

When our assumptions are violated
« Brightness constancy is not satisfied
* The motion is not small
» A point does not move like its neighbors
— window size is too large
— what is the ideal window size?

Reuvisiting the small motion assumption

Is this motion small enough?
« Probably not—it's much larger than one pixel (2" order terms dominate)
« How might we solve this problem? 21

Reduce the resolution!

Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=10 pixels‘,r"'

23
Gaussian pyramid of image H Gaussian pyramid of image |

Coarse-to-fine optical flow estimation

_. run iterative L-K

lwarp & upsample

.—' run iterative L-K +——

24
Gaussian pyramid of image |

Gaussian pyramid of image H

Optical flow result

Motion tracking

Suppose we have more than two images

* How to track a point through all of the images?

— In principle, we could estimate motion between each pair of
consecutive frames

— Given point in first frame, follow arrows to trace out it's path
— Problem: DRIFT

» small errors will tend to grow and grow over time—the point will
drift way off course

Feature Tracking

« Choose only the points (“features”) that are easily tracked
« How to find these features?

— windows where z \T!(V!)Thas two large eigenvalues
« Called the Harris Corner Detector

Feature Detection

o o
Q Q
o a o
o
o lol
(=}
o' 4 \s
- o Q
ol
s oo
otall 4 g o

Tracking features

Feature tracking
« Compute optical flow for that feature for each consecutive H, |
When will this go wrong?
« Occlusions—feature may disappear
— need mechanism for deleting, adding new features
« Changes in shape, orientation
— allow the feature to deform
« Changes in color
« Large motions
— will pyramid techniques work for feature tracking?

Handling large motions

Tracking Over Many Frames

L-K requires small motion
« If the motion is much more than a pixel, use discrete search instead

- - (-]

H(z,y) I(z,y)

« Given feature window W in H, find best matching window in |
« Minimize sum squared difference (SSD) of pixels in window

T (4) > Iz 4wy +v)— Hw,)2
(zy)eW

« Solve by doing a search over a specified range of (u,v) values
— this (u,v) range defines the search window

Feature tracking with m frames
1. Select features in first frame
. Given feature in frame i, compute position in i+1
. Select more features if needed
i=i+1
. Ifi<m, gotostep 2

ahwN

Issues
« Discrete search vs. Lucas Kanade?
— depends on expected magnitude of motion
— discrete search is more flexible

« Compare feature in frame i to i+1 or frame 1 to i+1?
— affects tendency to drift..

* How big should search window be?
— too small: lost features. Too large: slow

