Motion Estimation

By Colin Slides courtesy to Steve Seitz

Why estimate motion?

We live in a 4-D world

Wide applications

1

- Object Tracking
- Camera Stabilization
- Image Mosaics
- 3D Shape Reconstruction (SFM)
- Special Effects (Match Move)

2

Optical flow equation

 $0 = I_t + \nabla I \cdot [u \ v]$

Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

• The component of the flow in the gradient direction is determined

7

· The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion http://www.sandlotscience.com/Ambiguous/barberpole.htm

Lukas-Kanade flow

Observation

This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track, which are hard
 very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose A^TA is easily invertible
- Suppose there is not much noise in the image

When our assumptions are violated

- Brightness constancy is not satisfied
- The motion is not small
- A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

19

Feature tracking with m frames

- 1. Select features in first frame
- 2. Given feature in frame i, compute position in i+1
- 3. Select more features if needed
- 4. i = i + 1
- 5. If i < m, go to step 2

Issues

- Discrete search vs. Lucas Kanade?
- depends on expected magnitude of motion _ discrete search is more flexible
- Compare feature in frame i to i+1 or frame 1 to i+1?
- affects tendency to drift..
- How big should search window be? • _
 - too small: lost features. Too large: slow

30