Matching in 2D

engine model

Isthere an engine in the image? image containing an
If so, whereisit located? instance of the model

Point Representation and
Transformations

Normal Coordinates for a2D Point
S
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Homogeneous Coordinates

P =[sx, sy, s]t where sis ascale factor

Rotation
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How can the engine in the image
differ from that in the model ? [l

2D Affine Transformations

tranglation

rotation

Trangation

2 X 2 matrix doesn’'t work for tranglation!
Here's where we need homogeneous coordinates.




Rotation, Scaling and Trandlation
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Computing Affine Transformations
between Sets of Matching Points

P2=(x2,y2)

3'=(u3,v3)

P
B P2'=(u2,v2) 4
P1'=(ul,v1)

P1=(x1,y1l) P3=(x3,y3)

Given 3 matching pairs of points, the affine transformation
can be computed through solving a simple matrix equation.
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The Equations to Solve
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(11.16)
he six partial derivatives of the crror function with respect 1o each of the six varinbles
ing this expression Lo sero gives us the six equation d in matrix form o
1 1117

2D Model and 3 Matching
Images of a Boeing Airplane Part

A More Robust Approach

Instead, use many (n =10 or more) pairs of matching
control points to determine aleast squares estimate of
the six parameters of the affine transformation.

Error(all, al2, al3, a21, a22, a23) =

T ((alrx] +al2yj +a13- uj) +
N (@21 xj + a22%yj + a23 - vj) %)

What is thisfor?
Many 2D matching techniques use it.
1. Local-Feature Focus Method
2. Pose Clustering

3. Geometric Hashing




L ocal-Feature-Focus M ethod

« Each model has a set of features (interesting points).

- The focus features are the particularly detectable features,
usually representing several different areas of the model.

- Each focus feature has a set of nearby features that

can be used, along with the focus feature, to compute
the transformation. l

focus feature

Example Match 1. Good Match

Pose Clustering

Let T be atransformation aligning model VI with image object
The pose of object O isits location and orientation,
Theideaof pose clustering is to compute |ots of possible pose
transformations, each based on 2 points from the model and

2 hypothesized corresponding points from the image.*

Then cluster al the transformations in pose space and try
to verify the large clusters.

not afull affinetr:

LFF Algorithm

Let G be the set of detected image features.
Let be focus features of the model.
Let be the nearby features for feature f.

for each focus feature Fm
for each image feature Gi of the same type as Fm

1. find the maximal subgraph Sm of S(Fm) that matches a subgraph Si of S(Gi).

2. Compute transformation T that maps the points
of each feature of Sm to the corresponding one of Si.

3. Apply T to the line segments of the model.

4. If enough transformed segments find evidence in the image, return(T)

Example Match 2: Poor Match

Pose Clustering

Image

Correct Match: mapping ={ (1A), (2,B), (3C) }

There will be some votes for (B,C) -> (4,5), (B,C) -> (6,7)
etc. 18




Pose Clustering Applied to Geometric Hashing
Detecting a Particular Airplane

« This method was developed for the case where thereis
a totry to find in an image.

« Ittrades:

alarge amount of offline preprocessing and
alarge amount of space

for potentialy fast online

Theory Behind Geometric Hashing BT e

isaan ordered set of feature points. . . : )
If X is represented in affine coordinates (§,1).

M = <P1,P2,P3,P4,P5,P6,P7,P8>

«An isany subset E={€00,e01,e10} and we apply affine transform T to point X, we get
of noncollinear points of
« For basis E, any point x € M can be represented in

Em). 01" In both cases, x has the same coordinates (§,1).
L el0

€00 2

For each model M
Extract feature point set FM

for each noncollinear triple E of FM (basis)
for each other point x of FM

calculate (§,m) for x with respect to E
store (M,E) in hash table H at index (€,n)
}




list of model /
basis pairs

Verification

How well does the transformed model line up
with the image.

« compare positions of feature points

« compare full line or curve segments

Whole segments work better, allow less halucination,
but there's a higher cost in execution time.

Formalism
<A (unit) is astructure in the scene,
such as aregion or segment or corner.
<A is a symbol assigned to identify the part.

*An is a set of N-tuples defined over a
set of parts or aset of labels.

*«An is amapping from parts to |abels.

Online Recognition

initialize accumulator A to al zero
extract feature points from image Mk
for each basistriple /* one basis*/
for each other point v /* each image point */

{

retrieve list L from hash table at index (&)
for each pair (M,E) of L
A[M,E] = A[M,E] +1
find peaks in accumulator array A
for each peak (M,E) in A
calculate and try to verify T 3: F=TE

2D Object Recognition Paradigms
« We can formalize the recognition problem as finding
amapping from model structures to image structures.

« Then we can look at different paradigms for solving it.

- interpretation tree search
- discrete relaxation

- continuous relaxation




Abstract Example ~ binary relation RL

Consistent Labeling Definition

- binary relation RP
Given:

1. aset of units

2. aset of labels for those units
3. arelation I over set P

4. arelation over set L

P={1,23} L ={ab,c,d.e}
RP={(1,2),(2,1).(2,3)} RL ={(ac),(c.a),(ch),
if (pi, pj) € RP, then (f(pi), f(pj)) € RL (c,d),(e,c),(ed)}

House Example 1. Interpretation Tree

*«An isatreethat represents all
assignments of labels to parts.

RP and RL are « Each path from the root node to aleaf represents
connection relations. a (partial) assignment of labelsto parts.

 Every path terminates as either

1. acomplete consistent labeling
f(S7)=Sg 2. afailed partia assignment
f(S8) =9l
f(S9)=sd

Tree Search Algorithm

Interpretation Tree Example

This search
=

exponential
complexity!

(29 - But we
ZI ‘. doit for
small enough
problems.

@h  (3d)




2. Discrete Relaxation

« Discrete relaxation is an alternative to (or addition to)
the interpretation tree search.

« Relaxation is an iterative technique with polynomial
time complexity.

» Relaxation uses local constraints at each iteration.

« It can be implemented on parallel machines.

Example of Discrete Relaxation

RP

Preliminary Definitions

DA is a sequence of
relations over a set of tives P.

«Let DA ={R1,...,RI} bearelational description over A.
«Let DB ={S1,...,Sl} bearelational description over B.
« Let f beal-1, onto mapping from A to B.

« For any relation R, the composition isgiven by

How Discrete Relaxation Works

1. Each unit is assigned a set of initial possible labels.

2. All relations are checked to seeif some pairs of labels
are impossible for certain pairs of units.

3. Inconsistent labels are removed from the label sets.
4. If any labels have been filtered out
then another passis executed

else the relaxation part is done.

5. If there is more than one labeling left, atree search
can be used to find each of them.

3. Relational Distance Matching

« A fully consistent labeling is unrealistic.

* An image may have missing and extra features;
required relationships may not always hold.

« Instead of looking for a consistent labeling,

we can look for the )
the one that preserves the most relationships.

Example of Composition

l:l




Relational Distance Definition

Let DA be arelational description over set A,
DB be arelational description over set B,
andf:A->B.

¢ The for Riin DA and Si in DB is

*The with respect to DA and DB is

! .
Ef)=3 E ()
1

*The GD(DA,DB) isgiven by

GD(DA,DB) = min E(f)
f:A— B, f1-1and onto

Example
Let f ={(1,9),(2,b),(3,c),(4,d)}

Isthere a better m

4. Continuous Relaxation

* |n discrete relaxation, alabel for aunit is either possible or not.
« In continuous relaxation, each (unit, label) pair has a probability.
« Every label for unit i has aprior probability.

A set of compatibility coefficients C = {cij} givestheinfluence
that the label of unit i has on the label of unit j.

« Therelationship R is replaced by a set of unit/label compatibilities
whererij(l,I") isthe compatibility of label | for part i with
label 1" for part j.

« An iterative process updates the probability of each label for
each unit in terms of its previous probability and the compatibilities
of its current |abels and those of other units that influence it.

Variations

« Different weights on different relations
» Normalize error by dividing by total possible
* Attributed relational distance for attributed relations

* Penalizing for NIL mappings




