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Color

Used heavily in human vision
Color is a pixel property, 
making some recognition 
problems easy
Visible spectrum for humans 
is 400nm (blue) to 700 nm 
(red)
Machines can “see” much 
more; ex. X-rays, infrared, 
radio waves
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Imaging Process (review)

3

Factors that Affect Perception
• Light:            the spectrum of energy that

illuminates the object surface

• Reflectance:   ratio of reflected light to incoming light

• Specularity:    highly specular (shiny) vs. matte surface

• Distance:        distance to the light source

• Angle:            angle between surface normal and light
source

• Sensitivity       how sensitive is the sensor 4

Some physics of color:
Visible part of the electromagnetic spectrum

White light is composed of all visible frequencies (400-700)

Ultraviolet and X-rays are of much smaller wavelength

Infrared and radio waves are of much longer wavelength
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Coding methods for humans

• RGB is an additive system (add colors to 
black) used for displays

• CMY[K] is a subtractive system for printing

• HSV is good a good perceptual space for    
art, psychology, and recognition

• YIQ used for TV is good for compression

6

Comparing Color Codes
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RGB color cube

• R, G, B values 
normalized to 
(0, 1) interval

• human 
perceives gray 
for triples on 
the diagonal

• “Pure colors” 
on corners
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Color palette and normalized 
RGB
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Color hexagon for HSI (HSV)
Color is coded relative to the diagonal of the color cube. 
Hue is encoded as an angle, saturation is the relative 
distance from the diagonal, and intensity is height.

intensity

saturation
hue
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Editing saturation of colors

(Left) Image of food originating from a digital camera; 

(center) saturation value of each pixel decreased 20%; 

(right) saturation value of each pixel increased 40%.
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Properties of HSI (HSV)
Separates out intensity I from the coding
Two values (H & S) encode chromaticity
Convenient for designing colors

Hue H is defined by an angle

Saturation S models the purity of the color
S=1 for a completely pure or saturated color
S=0 for a shade of “gray”
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YIQ and YUV for TV signals
Have better compression properties
Luminance Y encoded using more bits than 
chrominance values I and Q; humans more 
sensitive to Y than I,Q
NTSC TV uses luminance Y; chrominance 
values I and Q
Luminance used by black/white TVs
All 3 values used by color TVs
YUV encoding used in some digital video and 
JPEG and MPEG compression
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Conversion from RGB to YIQ 

We often use this for color to gray-tone conversion.

An approximate linear transformation from RGB to YIQ:

14

Colors can be used for image 
segmentation into regions

Can cluster on color values and pixel locations

Can use connected components and an 
approximate color criteria to find regions

Can train an algorithm to look for certain 
colored regions – for example, skin color
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Color Clustering by K-means Algorithm

Form K-means clusters from a set of n-dimensional vectors

1. Set ic (iteration count) to 1

2. Choose randomly a set of K means m1(1), …, mK(1).

3. For each vector xi, compute D(xi,mk(ic)), k=1,…K
and assign xi to the cluster Cj with nearest mean.

4.  Increment ic by 1, update the means to get m1(ic),…,mK(ic).

5. Repeat steps 3 and 4 until Ck(ic) = Ck(ic+1) for all k.
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K-means Clustering Example

Original RGB Image Color Clusters by K-Means
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Extracting “white regions”

Program learns white 
from training set of 
sample pixels.
Aggregate similar 
neighbors to form 
regions.
Components might be 
classified as characters.
(Work contributed by 
David Moore.)

(Left) input 
RGB image

(Right) 
output is a 
labeled
image.
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Skin color in RGB space (shown as 
normalized red vs normalized green)

Purple region 
shows skin color 
samples from 
several people. 
Blue and yellow 
regions show 
skin in shadow 
or behind a 
beard. 
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Finding a face in video frame

(left) input video frame
(center) pixels classified according to RGB space
(right) largest connected component with aspect 
similar to a face (all work contributed by Vera 
Bakic)

20

Color histograms can 
represent an image

Histogram is fast and easy to compute.

Size can easily be normalized so that 
different image histograms can be compared.

Can match color histograms for database 
query or classification.
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Histograms of two color 
images

22

Retrieval from image database

Top left 
image is 
query 
image. The 
others are 
retrieved by 
having 
similar color 
histogram 
(See Ch 8).
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How to make a color 
histogram

Make 3 histograms and concatenate them

Create a single pseudo color between 0 and 
255 by using 3 bits of R, 3 bits of G and 2 bits 
of B (which bits?)

Can normalize histogram to hold frequencies 
so that bins total 1.0

24

Apples versus oranges 

Separate HSI histograms for apples (left) and oranges 
(right) used by IBM’s VeggieVision for recognizing produce 
at the grocery store checkout station (see Ch 16).
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Swain and Ballard’s Histogram Matching
for Color Object Recognition 
(IJCV Vol 7, No. 1, 1991)

Opponent Encoding:

Histograms: 8 x 16 x 16 = 2048 bins

Intersection of image histogram and model histogram:

Match score is the normalized intersection:

• wb = R + G + B
• rg = R - G
• by = 2B - R - G

intersection(h(I),h(M)) = ∑ min{h(I)[j],h(M)[j]}

match(h(I),h(M)) = intersection(h(I),h(M)) / ∑ h(M)[j]

j=1

numbins

j=1

numbins

26

(from Swain and Ballard)

cereal box image 3D color histogram

27

Four views of Snoopy          Histograms

28

The 66 models objects          Some test objects

29

More test objects used in occlusion experiments

30

Results

Results were surprisingly good. 

At their highest resolution (128 x 90), average match
percentile (with and without occlusion) was 99.9.

This translates to 29 objects matching best with
their true models and 3 others matching second best
with their true models.

At resolution 16 X 11, they still got decent results
(15 6 4) in one experiment; (23 5 3) in another.
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Conclusions (theirs)

• Simple and efficient, no geometry

• Robust to some occlusion

• Real-time rates for a robot 

32

Models of Reflectance

We need to look at models for the physics 
of illumination and reflection that will
1.  help computer vision algorithms 
extract information about the 3D world, 
and
2.  help computer graphics algorithms 
render realistic images of model scenes.

Physics-based vision is the subarea of computer vision
that uses physical models to understand image formation
in order to better analyze real-world images.

33

The Lambertian Model:
Diffuse Surface Reflection

A diffuse reflecting
surface reflects light
uniformly in all 
directions

Uniform brightness 
for
all viewpoints of a 
planar
surface.

diffuse i ∼ n ° s

34

Real matte objects

35

Specular reflection is highly
directional and mirrorlike.

R is the ray of 
reflection

V is direction from the
surface toward  the
viewpoint

α is the shininess
parameter

36

Real specular objects
Chrome car parts are 
very shiny/mirrorlike
So are glass or ceramic 
objects
And waxey plant leaves
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Phong reflection model
Reasonable realism, reasonable computing
Uses the following components 

(a) ambient light
(b) diffuse reflection component
(c ) specular reflection component
(d)  darkening with distance

Components (b), (c ), (d) are summed over 
all light sources.
Modern computer games use more 
complicated models.

38

Phong shading model uses

1. the reflective properties of the surface element
imaged at I[x,y]

2. the positions and characteristics of all M light sources

• K     is for diffuse reflectivity

• K     is for specular reflectivity

dλ

sλ

39

Phong model for intensity at 
wavelength lambda at pixel [x,y]

ambient diffuse specular

I    is the intensity of light source m for wavelength λ

The mth light source is a distance d   from the surface 
element and makes reflection ray R   off of it.

mλ

m
m

40

Color Image Analysis with an 
Intrinsic Reflection Model*

*Klinker, Shafer, and Kanade, ICCV, 1988

The Problem:

• Understand the reflection properties of dielectric materials
(e.g. plastics).

• Use them to separate highlights from true color of an object.

• Apply this to image segmentation.

41

The Dichromatic Reflection Model

The light reflected from a point on a dielectric non-
uniform material is a mixture of the light reflected 
from the material surface and that from the material 
body.

exiting body
reflection

exiting surface
reflection

incident light

N

42

Let L(λ,i,e,g) be the total reflected light.
λ wavelength
i    angle of incident light
e   angle of emitted light
g   phase angle

• The surface reflection component L (λ,i,e,g) appears
as a highlight or gloss.

• The body reflection component L (λ,i,e,g) gives the
characteristic object color.

Then L(λ,i,e,g) = L (λ,i,e,g)  + L (λ,i,e,g) 

s

b

s
s

b
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The Dichromatic Reflection Equation

L(λ,i,e,g) = m  (i,e,g)c  (λ) + m  (i,e,g)c  (λ) s s b b

• c   and c   are the spectral power distributions

• m   and m   are the geometric scale factors

s b

bs

For RGB images, this reduces to the pixel equation

C = [R,G,B] = m  C   + m  C s s b b

44

Object Shape and Color Variation

Assumption: all points on one object depend on the
same color vectors c  (λ) and c  (λ).  Then

• light mixtures all fall into a dichromatic plane
in color space

• light mixtures form a dense color cluster 
in this plane

b s

45

Dichromatic Plane

matte line

highlight
line

2 linear clusters
• matte points
• highlight points

• The combined color cluster looks like a skewed T.

• Skewing angle depends on color difference between
body and surface reflection.

• As a heuristic, the highlight starts in the upper 50%
of the matte line.

c (λ)

c (λ)

s

b

46

Color Image Analysis

• Color segmentation based on RGB will often find
boundaries along highlights and shadows.

• The DRM can be used to better segment.

Algorithm:
1. compute initial rough segmentation

• compute principal components of color distribution
from small, nonoverlapping image windows.

• combine neighboring windows with similar color
distributions into larger regions of locally consistent
color

47

2.   For regions with linear descriptions
• approximate c by the first eigenvector of its

color distribution

• construct a color cylinder with c  as axis and 
width a multiple of estimated camera noise

• use the cylinder to decide which pixels to
include in the image region

• result is a color segmentation that outlines
the matte colors

b

b

48

3.  Use the skewed T idea to find highlight clusters
related to the matte clusters.

4.  Use matte plus highlights to form the planar hypothesis.

5.  Use the planar hypothesis to grow the matte linear 
object area into the highlight area.
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Color Histograms in our own Current Work:
Histograms from ALL Regions of Images
Containing Grass

52

HS

I

Segmented Images with Grass-Only Training Regions

53

Segmented Images with Tree-Only Training Regions

54

cheetah hue distribution      background hue distribution

We are now developing Gaussian Mixture
Models for our object classes.


