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AbstractÐWe investigate the use of linear and nonlinear principal manifolds for learning low-dimensional representations for visual

recognition. Several leading techniques: Principal Component Analysis (PCA), Independent Component Analysis (ICA), and nonlinear

Kernel PCA (KPCA) are examined and tested in a visual recognition experiment using 1,800+ facial images from the ªFERETº

database. We compare the recognition performance of nearest-neighbor matching with each principal manifold representation to that

of a maximum a posteriori (MAP) matching rule using a Bayesian similarity measure derived from dual probabilistic subspaces. The

experimental results demonstrate the simplicity, computational economy, and performance superiority of the Bayesian subspace

method over principal manifold techniques for visual matching.

Index TermsÐSubspace techniques, PCA, ICA, Kernel PCA, Probabilistic PCA, learning, density estimation, face recognition.

æ

1 INTRODUCTION

IN recent years, computer vision research has witnessed a
growing interest in subspace analysis techniques. In

particular, eigenvector decomposition has been shown to
be a highly effective tool for problems which have high-
dimensional signal formats (e.g., an image array) but,
nevertheless, represent visual phenomena which are in-
trinsically low-dimensionalÐneedless to say, this is all too
often the case in computer vision. Subspace analysis is
heavily used in appearance-based modeling and recogni-
tion where the principal modes or the characteristic degrees-of-
freedom are extracted and used for description, detection,
and recognition. The identification and parametric repre-
sentation of data in terms of these ªprincipal manifoldsº is
to be found in physically-based modeling [37], correspon-
dence and matching [41], parametric descriptions of shape
[10], target detection [36], [7], [34], nonlinear image
interpolation [5], appearance-based visual learning [32],
[33], [35], [29], [30], face recognition [44], [36], [28], Linear
Discriminant Analysis [13], Fisherfaces [3], as well as
subspace density estimation [29], [30].

Subspace methods are often critical in machine learning
where they are used to extract low-dimensional manifolds
comprised of statistically uncorrelated or independent vari-
ables which tend to simplify tasks such as regression,
classification, and density estimation. The Karhunen-LoeÁve
Transform (KLT) [22] and Principal Components Analysis
(PCA) [18] are examples of eigenvector-based techniques
which are commonly used for dimensionality reduction and
feature extraction. Independent Factor Analysis (IFA) [1] and
more specifically Independent Component Analysis (ICA) [9]
is another linear decomposition which seeks statistically
independent and non-Gaussian components, modeling the
observed data as a linear mixture of (unknown) independent

sources. ICA's proficiency in ªblind source separationº [20]
has found a particular niche in the analysis of EEG [23] and
fMRI [25] signals of the brain. Nonlinear PCA (NLPCA) [21],
[12], nonlinear Principal Surfaces [15], [16], ªkernelº PCA [40],
and nonlinear latent variable models [14] are various
extensions of these linear techniques. In the following section,
we will review some of these principal manifolds, their
derivation, and consequent statistical properties. In Section 3,
an alternative technique using probabilistic subspaces is
presented and its performance is compared to principal
manifolds in Section 4. We conclude with a discussion of the
pros and cons of the different recognition techniques in
Section 5.

2 SUBSPACE REPRESENTATIONS

Spatiotopic visual data (e.g., images, depth maps, flow
fields, etc.) can be represented (after proper normalization)
as vectorsÐi.e., as points in a high-dimensional vector
space. For example, a m-by-n 2D image P �i; j� can be
mapped to a vector x 2 RN�mn, by lexicographic ordering
of the pixel elements.1 Despite this high-dimensional
embedding, the natural constraints of the physical world
(and the imaging process) dictate that the data will, in fact,
lie in a lower-dimensional (though possibly disjoint)
manifold. The primary goal of subspace analysis is to
identify, represent, and parameterize this manifold in
accordance with some optimality criteria. In the next
section, we review several techniques for computing both
linear and nonlinear principal manifolds and highlight their
corresponding statistical properties. It should be pointed
out that, in this paper, we are assuming that the data can be
modeled by a compact and connected (nondisjoint) mani-
foldÐwhich is often the case for frontal faces. More
sophisticated techniques for subspace modeling of disjoint
manifolds exist [30], [43], [4] which would, for example, be
required if variations in pose and lighting were to modeled.
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2.1 Linear PCA Manifolds

In PCA [18], the basis functions in a discrete Karhunen-LoeÁve
Transform (KLT) [22] are obtained by solving the algebraic
eigenvalue problem �� � ��T����, where �� is the covariance
matrix of the data, �� is the eigenvector matrix of ��, and �� is the
corresponding diagonal matrix of eigenvalues. The unitary
matrix �� defines a coordinate transform (rotation) which
decorrelates the dataandmakes explicit the invariant subspace of
the matrix ªoperatorº ��. Most commonly, PCA is a partial
KLT which identifies the largest (or principal) eigenvalue
eigenvectors for projecting the data: y � ��T

M x, where ��M is a
submatrix of �� containing the principal eigenvectors (from
here on, we will just use �� to denote ��M ). PCA can be seen as a
linear projection RN !RM onto the lower-dimensional
subspace corresponding to the maximal eigenvalues. The
main properties of the PCA transform are summarized by the
following:

x � ��y; ��T�� � I; Efyiyjgi6�j � 0 �1�
corresponding to approximate reconstruction, orthonormal-
ity of the basis �� and decorrelated principal components,
respectively. Fig. 1a illustrates the principal component
vectors (columns of ��) obtained with a toy data set
corresponding to an essentially one-dimensional (nonlinear)
manifold. Projection of the data points onto the first principal
component would then correspond a 1D linear manifold
representation (the second PC, shown as a smaller line
segment in the figure, would be discarded in this low-
dimensional example).

2.2 Linear ICA Manifolds

Independent Component Analysis (ICA) [20], [9] is similar
to PCA except that the distribution of the components are
designed to be sub/super Gaussian (usually by minimiz-
ing/maximizing fourth-order distribution cumulants such
as kurtosis). Maximizing non-Gaussianity also promotes
statistical independence, which is the desired goal. Like PCA,
ICA is also a linear projection RN !RM but with different
properties:

x � Ay;ATA 6� I; P �y� �
Y

p�yi� �2�

corresponding to approximate reconstruction, nonorthogon-
ality of the basis A and the near factorization of the joint
distribution P �y� into marginal distributions of the (non-
Gaussian) ICs. An example of an ICA basis is shown in Fig. 1b,
where we see two unordered nonorthogonal IC vectors one of
which is roughly aligned with the first principal component
vector in Fig. 1aÐi.e., the direction of maximum variance.
The actual non-Gaussianity and statistical independence
achieved in this toy example are minimal at best.

2.3 Nonlinear Principal Manifolds

The defining property of nonlinear principal manifolds is that
the inverse image of the manifold in the original space RN is
(typically) a nonlinear (curved) lower-dimensional surface
that ªpasses through the middle of the data,º while
minimizing the sum total distance between the data points
and their projections on that surface. Often referred to as
principal curves [16], this formulation is essentially a nonlinear
regression on the data. An example of a principal curve is
shown in Fig. 1c.

One of the simplest methods for computing nonlinear
principal manifolds is the nonlinear PCA (NLPCA) auto-
encoder multilayer neural network [21], [12] shown in Fig. 2.
The so-called ªbottleneckº layer forms a lower-dimensional
manifold representation by means of a (weighted-sum-of-
sigmoids) nonlinear projection function f�x�. The resulting
principal components y have an inverse mapping with a
similar nonlinear reconstruction function g�y�, which repro-
duces the input data as accurately as possible. The NLPCA
computed by such a multilayer sigmoidal neural network is
equivalentÐwith certain exceptions2Ðto a principal surface
under the more general definition [15], [16]. To summarize,
the main properties of NLPCA are:

y � f�x�;x � g�y�; P �y� � ? �3�
corresponding to nonlinear projection, approximate recon-
struction and, typically, no prior knowledge regarding the
joint distribution of the components, respectively (however,
see Zemel and Hinton [45] for an example of devising
suitable priors in such cases). The principal curve in Fig. 1c
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Fig. 1. (a) PCA basis (linear, ordered, and orthogonal). (b) ICA basis (linear, unordered, and nonorthogonal). (c) Principal Curve (parameterized

nonlinear manifold.

2. The class of functions attainable by this neural network restricts the
projection function f�� to be smooth and differentiable, hence suboptimal in
some cases [24].



was generated with a 2-4-1-4-2 layer neural network of the
type shown in Fig. 2. Note how the principal curve yields a
compact and (relatively) accurate representation of the data.

2.4 Kernel PCA Manifolds

Recently, nonlinear principal component analysis has
been revived with the ªkernel eigenvalueº method of
SchoÈlkopf et al. [40]. The basic methodology of KPCA is
to apply a nonlinear mapping to the input 	�x� : RN !RL

and then solve for a linear PCA in the resulting feature
space RL, where L is larger than N and possibly infinite.
Because of this increase in dimensionality, the mapping
	�x� is made implicit (and economical) by the use of kernel
functions satisfying Mercer's theorem [11]

k�xi;xj� � �	�xi� �	�xj��; �4�
where kernel evaluations k�xi;xj� in the input space corre-
spond to dot-products in the higher dimensional feature
space. Because computing covariance is based on dot-
products, performing a PCA in the feature space can be
formulatedwithkernels in the inputspacewithout theexplicit
(and possibly prohibitive) direct computation of 	�x�.
Specifically, assuming that the projection of the data in feature
space is zero-mean (ªcenteredº), the covariance is given by

�K �< 	�xi�	�xi�T > �5�
with the resulting eigenvector equation�V � �KV. Since the
eigenvector solutions V must lie in the span of the training
data 	�xi�, it must be true that for each training point

��	�xi� �V� � �	�xi� � �KV� for i � 1; . . .T �6�
and that there must exist coefficients fwig such that

V �
XT
i�1

wi	�xi�: �7�

Using the definition of �K , substituting the above equation
into (6), and defining the resulting T -by-T matrix K by
Kij � �	�xi� �	�xj��, leads to the equivalent eigenvalue
problem formulated in terms of kernels in the input space

T�w � Kw; �8�
where w � �w1; . . . ; wT �T is the vector of expansion coeffi-

cients of a given eigenvector V as defined in (7). The kernel

matrix Kij � k�xi;xj� is then diagonalized with a standard

PCA.3 Orthonormality of the eigenvectors, �Vn �Vn� � 1,

leads to the equivalent normalization of their respective

expansion coefficients, �n�wn �wn� � 1.
Subsequently, the KPCA principal components of any

input vector can be efficiently computed with simple kernel
evaluations against the data set. The nth principal compo-
nent yn of x is given by

yn � �Vn �	�x�� �
XT
i�1

wni k�x;xi�; �9�

whereVn is thentheigenvectorof the featurespacedefinedby
	. As with PCA, the eigenvectors Vn can be ranked by
decreasingorderoftheireigenvalues�n andanM-dimensional
manifold projection of x is y � �y1; . . . ; yM�T , with individual
components defined by (9).

A significant advantage of KPCA over neural network and
principal curves is that KPCA does not require nonlinear
optimization, is not subject to overfitting, and does not
require prior knowledge of network architecture or number
of dimensions. Furthermore, unlike traditional PCA, one can
use more eigenvector projections than the input dimension-
ality of the data (since KPCA is based on the matrix K, the
number of eigenvectors or features available is T ). On the
other hand, the selection of the optimal kernel (and its
associated parameters) remains an ªengineering problem.º
Typical kernels include Gaussians exp�ÿkxi ÿ xjk�2=�2�,
polynomials �xi � xj�d, and sigmoids tanh�a�xi � xj� � b�, all
of which satisfy Mercer's theorem [11].

3 PROBABILISTIC SUBSPACES

The input visual data (or equivalently its manifold represen-
tation) can form the basis for simple recognition strategies
using Euclidean metrics or normalized correlation. For
example, in its simplest form, the similarity measure
S�I1; I2� between two images I1 and I2 (or their manifold
projections) can be set to be inversely proportional to the
norm jjI1 ÿ I2jj which corresponds to a template-matching
approach to recognition [6], [19]. Such a formulation suffers
from a major drawback: it does not exploit knowledge of
which types of variation are critical (as opposed to incidental)
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Fig. 2. An autoassociative (ªbottleneckº) neural network for computing principal manifolds y 2 RM in the input space x 2 RN .

3. However, computing �K in (5) requires ªcenteringº the data by
computing the mean of 	�xi�. Since there is no explicit computation of
	�xi�, the equivalent must be carried out when computing the kernel
matrix K. For details on ªcenteringº K, see [40].



in expressing similarity. However, one can formulate a

probabilistic similarity measure which is based on the

probability that the image intensity (or equivalently manifold

vector) differences, denoted by � � I1 ÿ I2, are characteristic

of typical variations in appearance of the same object. For

example, for purposes of face recognition, one can define two

classes of facial image variations: intrapersonal variations 
I

(corresponding, for example, to different facial expressions of

the same individual) and extrapersonal variations 
E (corre-

sponding to variations between different individuals). The

similarity measureS��� can then be expressed in terms of the

intrapersonal a posteriori probability given by Bayes rule:

S��� � P �
I j�� � P ��j
I�P �
I�
P ��j
I�P �
I� � P ��j
E�P �
E� : �10�

The likelihoods P ��j
I� and P ��j
E� can be estimated

by traditional means (given enough data) or, alternatively,

with subspace density estimation techniques [30], [26] when

faced with very high-dimensional data or with data short-

age (insufficient number of samples). Furthermore, the

priors P �
� can be set to reflect specific operating

conditions (e.g., number of test images versus the size of

the database) or other sources of a priori knowledge

regarding the two images being matched. Note that this

particular Bayesian formulation casts the standard face

recognition task (essentially an m-ary classification problem

for m individuals) into a binary pattern classification

problem with 
I and 
E . This simpler problem is then

solved using the maximum a posteriori (MAP) ruleÐi.e.,

two images are determined to belong to the same individual

if P �
I j�� > P �
E j�� or, equivalently, if S��� > 1
2 .

Alternatively, a simplified similarity measure based only

on the 
I likelihood can be used. This maximum-likelihood

(ML) similarity measure ignores extrapersonal variations

altogether and is given by S0��� � P ��j
I�. In our

experience, the 
I density in (10) carries the greater weight

in modeling the posterior similarity used for MAP recogni-

tion. The extrapersonal 
E density serves a secondary role

and its accurate modeling is less critical. In the extreme, by

dropping the 
E likelihood in favor of a ML similarity, we

obtain S0���, which typically suffers only a minor deficit

(3-4 percent) in accuracy as compared to S��� [27].

3.1 Subspace Density Estimation

To deal with the inevitable high-dimensionality of � (which

is the same as that of the images), we use the efficient

density estimation method proposed by Moghaddam and

Pentland [29], [30] which divides the vector space RN into

two complementary subspaces as shown in Fig. 4 using an

eigenspace decomposition. This method uses PCA to obtain

a principal subspace F whose principal components y can

be used to form an optimal (minimal divergence) low-

dimensional estimate of the complete likelihood using only

the first M principal components fy1; y2; y3; . . . ; yMg, where

M << N .
As derived in [29], the complete likelihood estimate can

be written as the product of two independent marginal

Gaussian densities

P̂ ��j
� �
exp ÿ 1

2

XM
i�1

y2
i

�i

 !

�2��M=2
YM
i�1

�
1=2
i

266664
377775 �

exp ÿ �2���
2�

� �
�2����NÿM�=2

24 35
� PF ��j
�P̂ �F ��j
; ��;

�11�

where PF ��j
� is the true marginal density in F , P̂ �F ��j
; ��
is the estimated marginal density in the orthogonal

complement �F , yi are the principal components, and �2���
is the PCA residual (reconstruction error). The information-

theoretic optimal value for the density parameter � is

derived by minimizing the Kullback-Leibler (KL) diver-

gence and is found to be simply the average of the
�F eigenvalues

� � 1

N ÿM
XN

i�M�1

�i: �12�

This derivation is a special case of a more recent and

general factor analysis model, called Probabilistic PCA

(PPCA), proposed by Tipping and Bishop [42]. In their

formulation, the above expression for � is the maximum-

likelihood solution of a latent variable model as opposed to

the minimal-divergence solution derived in [29]. For a more

general expectation-maximization (EM) approach to factor

analysis, the reader is referred to [39].
In actual practice, the majority of the �F eigenvalues are

unknown but can be estimated, for example, by fitting a

nonlinear function to the available portion of the eigenvalue

spectrum and estimating the average of the eigenvalues

beyond the principal subspace. Fractal power law spectra of

the form fÿn are thought to be typical of ªnaturalº

phenomenon and are often a good fit to the decaying

nature of the eigenspectrumÐsee Fig. 4b.
Referring back to (10), we see that this approach requires

two projections of the difference vector �, from which

likelihoods can be estimated for the Bayesian similarity

measure S���. The projection steps are linear, while the

posterior computation is nonlinear. Because of the double

PCA projections required, this approach has been called a

ªdual eigenspaceº technique [31], [26], [27] and is con-

trasted to standard PCA-based ªeigenfacesº in Fig. 3. Note

the projection of the difference vector � onto the ªdual

eigenfacesº (
I and 
E) for computation of the posterior in

(10). In the following section, we will show that, in practice,

each input vector x will have two (precomputed) linear

PCA projections y�I
and y�E

and that the posterior

similarity S��� between any pair of vectors can be

expressed in terms of a pair of difference norms between

their corresponding dual projections.

3.2 Efficient Similarity Computation

Consider a feature space of � vectors, the differences

between two images (Ij and Ik). The two classes of interest

in this space correspond to intrapersonal and extrapersonal

variations and each is modeled as a high-dimensional

Gaussian density as in (13). The densities are zero-mean

since for each � � Ij ÿ Ik there exists a � � Ik ÿ Ij.
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P ��j
E� � eÿ
1
2�

T�ÿ1
E �

�2��D=2j �E j1=2

P ��j
I� � eÿ
1
2�

T�ÿ1
I �

�2��D=2j �I j1=2
:

�13�

By PCA, the Gaussians are known to only occupy a subspace
of image space (face-space) and, thus, only the top few
eigenvectors of the Gaussian densities are relevant for
modeling. These densities are used to evaluate the similarity
in (10). Computing the S��� similarity involves first
subtracting a candidate image Ij from a database entry Ik.
The resulting � image is then projected onto the eigenvectors
of the extrapersonal Gaussian and also the eigenvectors of the
intrapersonal Gaussian. The exponentials are computed,
normalized, and then combined as in (10). This operation is
iterated over all members of the database (many Ik images)
until the maximum score is found (i.e., the match). Thus, for

large databases, such evaluations are expensive and must be
simplified by offline transformations.

To compute the likelihoods P ��j
I� and P ��j
E�, we
preprocess the Ik images with whitening transformations.
Each image is converted and stored as a set of two whitened
subspace coefficients, y�I

for intrapersonal space and y�E
for

extrapersonal space (see (14)). Here, � and V are matrices of
the largest eigenvalues and eigenvectors of �E or �I .

yj�I
� �

ÿ1
2

I VIIj yj�E
� �

ÿ1
2

E VEIj: �14�
After this preprocessing, evaluating the Gaussians can be

reduced to simple Euclidean distances as in (15). Denomi-
nators are of course precomputed. These likelihoods are
evaluated and used to compute the MAP similarity S���
in (10). Euclidean distances are computed between the
ME-dimensional y�I

vectors, as well as the ME-dimensional
y�E

vectors. Thus, roughly 2� �ME �MI� arithmetic opera-
tions are required for each similarity computation, avoiding
repeated image differencing and projections.

P ��j
I� � P �Ij ÿ Ikj
I� � e
ÿkyj

�I
ÿyk�I

k2=2

�2��D=2j�I j1=2

P ��j
E� � P �Ij ÿ Ikj
E� � e
ÿkyj

�E
ÿyk�E

k2=2

�2��D=2j�Ej1=2
:

�15�

The ML similarity matching is even simpler since only
the intrapersonal class is evaluated, leading to the following
modified form for the similarity measure

S0��� � P ��j
I� � e
ÿkyj

�I
ÿyk�I

k2=2

�2��D=2j�I j1=2
: �16�

4 EXPERIMENTS

Our experimental data consisted of a training ªgalleryº of 706
individual FERET faces and 1,123 ªprobeº images containing
one or more views of every person in the gallery. All these
images were aligned and normalized, as described in [30].
The multiple probe images reflected different expressions,
lighting, and with glasses on/off, etc. In this study, we
decided to test the limits of the Bayesian matching algorithm
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Fig. 4. (a) Decomposition of RN into the principal subspace F and its orthogonal complement �F for a Gaussian density and (b) a typical eigenvalue
spectrum and its division into the two orthogonal subspaces.

Fig. 3. Signal flow diagrams for computing similarity g between two
images: (a) Eigenface similarity and (b) Probabilistic similarity. The
difference image is projected through both sets of (intra/extra)
eigenfaces in order to obtain the two likelihoods.



with respect to image resolution or, equivalently, the amount
of visible facial detail. Since this algorithm was indepen-
dently evaluated in DARPA's 1996 FERET face recognition
competition [38] with medium resolution images (84-by-
44 pixels)Ðachieving an accuracy of � 95 percent on O�103�
individualsÐwe decided to lower the resolution by a factor
16. Therefore, the aligned faces in our data set were down-
sampled to 21-by-12 pixels, yielding input vectors in a
RN�252 space. Several examples are shown in Fig. 5.

4.1 Evaluation Methodology

In order to make maximum use of the available data for
testing and to obtain confidence intervals on the recognition
rates, we used a 5-fold Cross-Validation (CV) analysis. The
total data set of 1,829 faces (706 unique individuals and their
collective 1,123 probes) was randomly partitioned into five
subsets with unique (nonoverlapping) individuals and their
associated probes. Each subset contained both gallery and
probe images of � 140 different (unique) individuals. For
each of the five subsets, the recognition task was correctly
matching the multiple probes to the� 140 gallery faces using
the other four subsets as training data. Note that withN � 252
and using 80 percent of the entire data set for training, we had
nearly three times as many training samples than the data
dimensionality, thus parameter estimations (for PCA, ICA,
KPCA, and Bayes) were properly overconstrained.

The resulting five experimental trials were pooled to
compute the mean and standard deviation of the recogni-
tion rates for each method. The fact that the training and
testing sets had no overlap in terms of individual identities
leads to an evaluation of the algorithms' generalization
performanceÐthe ability to recognize new individuals
which were not part of the manifold computation or
density modeling with the training set.

For our baseline recognition experiments, we selected a
default manifold dimensionality of d � 20. This choice
of d was made for two reasons: it led to a reasonable
PCA reconstruction error of MSE = 0.0012 (or 0.12 percent per
pixel with a normalized intensity range of [0,1]) and a baseline
PCA recognition rate of � 80 percent (on a different
50/50 partition of the data set), thus leaving a sizeable margin
for improvement. Note that since the recognition experi-
ments were essentially a 140-way classification task, chance
performance was approximately 0.7 percent.

4.1.1 PCA-Based Recognition

The baseline algorithm for our face recognition experiments
was standard PCA or ªeigenfaceº matching. The first eight
principal eigenvectors computed from a single partition are
shown in Fig. 6a. Projection of the test set probes onto the
20-dimensional linear manifold (computed with PCA on the
training set only) followed by nearest-neighbor matching to
the � 140 gallery images using a Euclidean metric yielded a
mean recognition rate of 77.31 percent with the highest rate
achieved being 79.62 percent, as shown in Table 1. For
calibration purposes, we also did full image-vector nearest-
neighbor (template matching)Ði.e., on x 2 R252Ðyielding a
recognition rate of 86.46 percent (see dashed line in Fig. 7).
Clearly, performance is degraded by the 252! 20 dimen-
sionality reduction, as expected.

4.1.2 ICA-Based Recognition

For ICA-based recognition, we used two different algorithms
based on fourth-order cumulants: the ªJADEº algorithm of
Cardoso [8] and the fixed-point algorithm of HyvaÈrinen and
Oja [17]. In both algorithms, a PCA whitening step
(ªspheringº) preceded the core ICA decomposition. The
corresponding nonorthogonal JADE-derived ICA basis is
shown in Fig. 6b. Similar basis faces were obtained with
HyvaÈrinen's method. These basis faces are the columns of
the matrix A in (2) and their linear combination (specified by
the ICs) reconstructs the training data. The ICA manifold
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Fig. 5. (a) Several faces from the gallery. (b) Multiple probes for one individual, with different facial expressions, eye-glasses, variable ambient
lighting, and image contrast, etc.

Fig. 6. (a) PCA faces and (b) ICA faces.

TABLE 1
Recognition Accuracies (in Percent) with d � 20 Subspace

Projections Using 5-Fold Crossvalidation



projection of the test set was obtained using y � Aÿ1x.
Nearest-neighbor matching with ICA resulted in a mean
recognition rate of 77.30 percent with the highest rate being
82.90 percent, as shown in Table 1. We found little difference
between the two ICA algorithms and noted that ICA resulted
in the largest performance variation in the five trials
(7.66 percent standard deviation). Based on the mean
recognition rates, it seems doubtful that ICA provides a
systematic advantage over PCA, indicating that ªmore non-
Gaussianº and/or ªmore independentº components did not
result in a better manifold for recognition purposes with this
data set. Note that the experimental results of Bartlett et al.
[2] with FERET faces did favor ICA over PCA, but mostly
with more difficult time-separated images. Their ICA versus
PCA performance margin at the � 80 percent recognition
level was not as significant. Compared to Bartlett et al. [2] our
faces were cropped much tighter leaving no information
regarding hair and face shape and also were much lower in
resolution; factors which when combined make the recogni-
tion task much harder.

4.1.3 KPCA-Based Recognition

For KPCA, we first evaluated Gaussian, polynomial, and
sigmoidal kernels and fine-tuned their parameters for best
performance with a different 50/50 partition validation
setÐGaussian kernels were found to be the best for this data
set. For each trial, the kernel matrix was computed from the
corresponding training data. Both the test set gallery and
probes were projected onto the kernel eigenvector basis
(using (9)) in order to obtain the nonlinear principal
components which were then used in nearest-neighbor
matching of test set probes against the test set gallery images.
The mean recognition rate was found to be 87.34 percent with
the highest rate being 92.37 percent, as shown in Table 1. The
standard deviation of the KPCA trials was slightly higher
(3.39) than that of PCA (2.21) but Fig. 7 indicates that KPCA
does in fact do better than both PCA and ICA, hence justifying
the use of nonlinear feature extraction.

4.1.4 MAP-Based Recognition

For Bayesian similarity matching, appropriate training �s for
the two classes 
I (Fig. 5b) and 
E (Fig. 5a) were used for the
dual PCA-based density estimates P ��j
I� and P ��j
E�,
which were both modeled as single Gaussians with subspace
dimensions of MI and ME , respectively. The total subspace
dimensionality d was divided evenly between the two
densities by setting MI �ME � d=2 for modeling.4

With d � 20, we used Gaussian subspace dimensions of
MI � 10 and ME � 10 for P ��j
I� and P ��j
E�, respec-
tively. Note that MI �ME � 20, thus matching the total
number of projections used with the three principal
manifold techniques. Using the maximum a posteriori
(MAP) similarity in (10), the Bayesian matching technique
yielded a mean recognition rate of 94.83 percent with the
highest rate achieved being 97.87 percent, as shown in
Table 1. The standard deviation of the five partitions for this
algorithm was also the lowest (1.96)Ðsee Fig. 7).

4.2 Compactness of Manifolds

We also compared the performance of the different
methods with different size manifolds by plotting their
recognition rates R�d� as a function of the first d principal
components. For the manifold matching techniques, this
simply meant using a subspace dimension of d (the first
d components of PCA/ICA/KPCA), whereas for the
Bayesian matching technique this meant that the subspace
Gaussian dimensions should satisfy MI �ME � d. Thus, all
methods used the same number of subspace projections.
This test was the premise for one of the key points
investigated in this study: given the same number of
subspace projections, which of these techniques is better
at data modeling and subsequent recognition? The pre-
sumption being that the one achieving the highest recogni-
tion rate with the smallest dimension is preferred.

For this particular dimensionality test, the total data set of
1,829 images was partitioned (split) in half: a training set of
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Fig. 7. Recognition performance of PCA, ICA, and KPCA manifolds versus Bayesian (MAP) similarity matching with a d � 20-dimensional subspace
(dashed line indicates the performance of nearest-neighbor matching with the full-dimensional image vectors).

4. In practice, MI > ME often works just as well. In fact, as ME ! 0, one
obtains a maximum-likelihood similarity S � P ��j
I� with MI � d, which
for this data set is only few percent less accurate than MAP [27].



353 gallery images (randomly selected) along with their
corresponding 594 probes and a testing set containing the
remaining 353 gallery images and their corresponding
529 probes. The training and test sets had no overlap in terms
of individuals' identities. As in the previous experiments, the
test set probes were matched to the test set gallery images
based on the projections (or densities) computed with the
training set. The results of this experiment are shown in Fig. 8
which plots the recognition rates as a function of the
dimensionality of the subspace d. This is a more revealing
comparison of the relative performance of the different
methods since compactness of the manifoldsÐdefined by the
lowest acceptable value of dÐis an important consideration
in regards to both generalization error (overfitting) and
computational requirements.

5 DISCUSSION

The relative performance of the principal manifold techni-
ques versus Bayesian matching is summarized in Table 1 and
Fig. 7. The advantage of probabilistic matching over metric
matching on both linear and nonlinear manifolds is quite
evident (� 18 percent increase over PCA and� 8 percent over
KPCA). Note that the dimensionality test results in Fig. 8
indicate that KPCA out-performs PCA by a � 10 percent
margin and, even more so, with only few principal
components (a similar effect is reported by SchoÈlkopf [40]
were KPCA out-performs PCA in low-dimensional mani-
folds). However, Bayesian matching achieves � 90 percent
with only four projectionsÐtwo for each P ��j
�Ðand
dominates both PCA and KPCA throughout the entire range
of subspace dimensions in Fig. 8.

A comparison of the subspace techniques with respect to
multiple criteria is shown in Table 2. Note that PCA, KPCA,
and the dual subspace density estimation are uniquely
defined for a given training set (making experimental
comparisons repeatable), whereas ICA is not unique due to
the variety of different techniques used to compute the basis
and the iterative (stochastic) optimizations involved. Con-
sidering the relative computation (of training), KPCA
required � 7� 109 floating-point operations compared to

PCA's � 2� 108. On the average, ICA computation was one
order of magnitude larger than PCA. Since the Bayesian
similarity method's learning stage involves two separate
PCAs, its computation is merely twice that of PCA
(essentially the same order of magnitude).

Considering its significant performance advantage (at
low-subspace dimensionality) and its relative simplicity, the
dual-eigenface Bayesian matching method is a highly
effective subspace modeling technique for face recognition.
In independent FERET tests conducted by the US Army
Laboratory [38], the Bayesian similarity technique out-
performed PCA and other subspace techniques such as
Fisher's Linear Discriminant (by a margin of at least
10 percent). The new experimental results in this paper show
that a similar recognition accuracy can be achieved using
mere ªthumbnailsº which are 16 times lower in resolution
than the images used in the FERET test. These results
demonstrate the Bayesian matching technique's robustness
with respect to image resolution, thus revealing the surpris-
ingly small amount of facial detail that is required for high-
accuracy performance with this learning technique.
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Fig. 8. Recognition accuracy R�d� of PCA, KPCA, and Bayesian similarity with increasing dimensionality d of the principal subspace (ICA results, not
shown, are similar to PCA).

TABLE 2
Comparison of the Subspace Techniques

Across Multiple Attributes (d � 20)
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