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Abstract

We consider the problem of robustly estimating op-
tical ow from a pair of images using a new frame-
work based on robust estimation which addresses
violations of the brightness constancy and spatial
smoothness assumptions. We also show the rela-
tionship between the robust estimation framework
and line-process approaches for coping with spatial
discontinuities. In doing so, we generalize the no-
tion of a line process to that of an outlier process
that can account for violations in both the bright-
ness and smoothness assumptions. We develop
a Graduated Non-Convexity algorithm for recov-
ering optical ow and motion discontinuities and
demonstrate the performance of the robust formu-
lation on both synthetic data and natural images.

1 Introduction

Algorithms for recovering optical ow embody a set of
assumptions about the world which, by necessity, are
simpli�cations and hence may be violated in practice.
For example, the assumption of brightness constancy
is violated when motion boundaries, shadows, or spec-
ular reections are present. Motion boundaries also
violate the common assumption that the optical ow
varies smoothly. Violations such as these result in gross
measurement errors which we refer to as outliers. To
compute optical ow robustly we must reduce the sen-
sitivity of the recovered optical ow to violations of the
assumptions by detecting and rejecting outliers.
Many common solutions to the optical ow prob-

lem are formulated in terms of least-squares estimation
which is well known to lack robustness in the presence
of outliers. We show how a robust statistical formula-
tion of these estimation problems makes the recovered
ow �eld less sensitive to assumption violations. This
robust formulation, combined with a deterministic op-
timization scheme, provides a framework for robustly
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estimating optical ow and allows assumption viola-
tions to be detected. We have applied the approach to
three standard techniques for recovering optical ow
[1]: area-based regression, correlation, and regulariza-
tion techniques.

Previous work in optical ow estimation has fo-
cused on the violation of spatial smoothness at motion
boundaries while ignoring violations of the brightness
constancy assumption. Within the robust estimation
framework, violations of both constraints are treated
in a uniform manner and we will demonstrate that the
\robusti�cation" of the brightness constancy assump-
tion greatly improves the ow estimates. The robust
estimation framework is also closely related to \line-
process" approaches for coping with spatial disconti-
nuities [4]. We generalize the notion of a line process
to that of an outlier process which can account for vio-
lations of both the brightness and smoothness assump-
tions.

2 Estimating Optical Flow

Most current techniques for recovering optical ow ex-
ploit two constraints on image motion: data conser-
vation and spatial coherence. The data conservation
constraint is derived from the observation that sur-
faces generally persist in time and, hence, the intensity
structure of a small region in one image remains con-
stant over time, although its position may change. The
spatial coherence constraint embodies the assumption
that surfaces have spatial extent and hence neighbor-
ing pixels in an image are likely to belong to the same
surface. Since the motion of neighboring points on a
smooth rigid surface changes gradually, we can enforce
an implicit or explicit smoothness constraint on the mo-
tion of neighboring points in the image plane.

2.1 Data Conservation Constraint

Let I(x; y; t) be the image intensity1 at a point (x; y)
at time t. The data conservation constraint can be
expressed in terms of the standard intensity constancy

1I may be a �ltered version of the intensity image at time t.
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assumption as follows:

I(x; y; t) = I(x+ u�t; y + v�t; t + �t); (1)

where (u; v) is the horizontal and vertical image veloc-
ity at a point and �t is small.
From this we derive the data conservation constraint:

ED(u; v) =
X

(x;y)2R

(Ixu+ Iyv + It)
2: (2)

As the size of the regionR tends to zero this error mea-
sure becomes the more familiar gradient-based con-
straint used in the Horn and Schunck algorithm [6] and
the solution for (u; v) is underconstrained. A large re-
gion R is needed to su�ciently constrain the solution
and provide some insensitivity to noise. The larger the
region however, the less likely our assumptions about
the motion will be valid over the entire region. For
example, the constant velocity assumption used in ED
above will be violated by a�ne ow, transparency, mo-
tion boundaries, etc. The dilemma surrounding the
appropriate size of R is referred to as the generalized
aperture problem.

2.2 Spatial Coherence Constraint

When R is small, the solution for u = (u; v) may need
to be further constrained by the addition of a spa-
tial coherence assumption in the form of a regularizing
term ES ; the objective function becomes:

E(u) = ED(u) + �ES(u); (3)

where � controls the relative importance of the data
conservation and spatial coherence terms. The most
common formulation of ES is the �rst-order, or mem-
brane, model:

ES(u; v) = u2x + u2y + v2x + v2y; (4)

where the subscripts indicate partial derivatives of the
ow in the x or y direction.
With this approach the local ow vector us is forced

to be close to the average of its neighbors. When a
motion discontinuity is present this results in smooth-
ing across the boundary which reduces the accuracy of
the ow �eld and obscures important structural infor-
mation about the presence of an object boundary.

3 Robust Estimation

While much of the work in computer vision has focused
on developing optimal strategies for exact parametric
models, there is a growing realization that we must be
able to cope with situations for which our models were
not designed. This has resulted in a growing interest
in the use of robust statistics in computer vision (see
[7] for a discussion).
As identi�ed by Hampel [5, page 11] the main goals

�(x) = x2  (x) = 2x
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Figure 1: Example Estimators. Quadratic (top).
Truncated quadratic (middle). Lorentzian (bottom).

of robust statistics are:

(i) To describe the structure best �tting the bulk of
the data.

(ii) To identify deviating data points (outliers) or
deviating substructures for further treatment, if
desired.

Speci�cally, robust estimation addresses the prob-
lem of �nding the values for the parameters, a =
[a0; : : : ; an], that best �t a model, u(s;a), to a set
of data measurements, d = fd0; d1; : : : ; dSg, s 2 S,
in cases where the data di�ers statistically from the
model assumptions. In �tting a model, the goal is to
�nd the values for the parameters, a, that minimize
the size of the residual errors (ds � u(s;a)):

min
a

X
s2S

�(ds � u(s;a); �s); (5)

where �s is a scale parameter, and � is our estimator.
When the errors in the measurements are normally dis-
tributed, the optimal estimator is the quadratic:

�(ds � u(s;a); �s) =
(ds � u(s;a))2

2�2s
; (6)

which gives rise to the standard least-squares estima-
tion problem. The function � is called an M-estimator
since it corresponds to the Maximum-likelihood esti-
mate. The robustness of a particular estimator refers
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to its insensitivity to outliers, or deviations, from the
assumed statistical model.
The problem with the least-squares solution is that

the outlying points are assigned a high weight by the
quadratic estimator (Figure 1, top left). One way to
see this is by considering the inuence function associ-
ated with a particular estimator. This function char-
acterizes the bias that a particular measurement has
on the solution and is determined by the derivative,
 , of the estimator [5]. In the least-squares case, the
inuence of data points increases linearly and without
bound (Figure 1, top right).
To increase robustness we will consider estimators

for which the inuence of outliers tends to zero. Many
of these redescending M-estimators have been studied
in robust statistics, but one of the most common in
computer vision is the truncated quadratic [2] (Figure
1, middle). Up to a �xed threshold, errors are weighted
quadratically, but beyond that, errors receive a con-
stant value. By examining the  -function we see that
the inuence of outliers goes to zero beyond the thresh-
old. For the remainder of the paper we will consider
the Lorentzian estimator (Figure 1, bottom), but the
treatment here could equally be applied to a wide va-
riety of the other estimators. A discussion of various
estimators can be found in [1].

3.1 Robust Estimation Framework

We make the simple observation that may common ap-
proaches to recovering optical ow are formulated as
least-squares estimation (including: correlation, reg-
ularization, and area-base techniques). Because each
approach involves pooling information over a spatial
neighborhood these least-squares formulations are in-
appropriate at motion boundaries. By treating the
problems in terms of robust estimation, we alleviate the
problems of oversmoothing and noise sensitivity typi-
cally associated with the least-squares formulations.
To improve the robustness, we reformulate our min-

imization problems to account for outliers by using the
robust estimators described above. We illustrate by
considering a simple gradient-based formulation of op-
tical ow [6]. For an image of size m � m pixels we
de�ne a grid of sites:

S = fs1; s2; : : : ; sm2 j 8w 0 � i(sw); j(sw) � m� 1g;
where (i(s); j(s)) denotes the pixel coordinates of site
s. The objective function, E(u), for the regularization
approach, becomes:

X
s2S

[
X
R

�1(Ixu+ Iyv + It; �1)

+�
X
n2Gs

[�2(us � un; �2) + �2(vs � vn; �2)]]; (7)

where Gs represents the set of north, south, east, west
neighbors of s in the grid, where �1 and �2 are scale
parameters and where �1 and �2 may be di�erent esti-
mators. Rather than choosing �i(x) = x2, which gives
the familiar least-squares formulation, we take the �i
to be robust estimators.

4 Relationship to Line Processes

We now examine how the robust estimation approach
relates to line-process approaches in which �rst-order
discontinuities in the ow are modeled by binary val-
ued line processes ls;n which represent the presence, or
absence, of a discontinuity between sites s and n [2, 4].2

The new objective function, E(u; l), is then:

X
s2S

[(Ixus + Iyvs + It)
2

+�
X
n2Gs

[�S(1� ls;n)kus � unk2 + �Sls;n]]; (8)

where �S and �S are constant factors controlling the
weighting of the smoothness term and the \penalty
term" respectively. Such a formulation allows viola-
tions of the spatial smoothness term, but does not ac-
count for violations of the data term. This prompts us
to generalize the notion of a \line process" to that of
an \outlier process" that can be applied to both data
and spatial terms to perform outlier rejection in the
same spirit as the robust estimators do. The objective
function, E(u; l; d), is then reformulated as:

X
s2S

[�D(1� ds)(Ixus + Iyvs + It)
2 + �Dds

+�
X
n2Gs

[�S(1� ls;n)kus � unk2 + �S ls;n]]; (9)

where we have simply introduced a new process ds and
constant scaling factors �D and �D .

From Outlier Process to Robust Estimation:
Blake and Zisserman [2] showed that line processes can
be eliminated from the objective function by �rst min-
imizing over them, resulting in an objective function
which is solely a function � of the actual variables un-
der consideration. Exactly the same treatment can be
applied to the outlier-process formulation to derive [1]:

min
u

X
s2S

[�((Ixus + Iyvs + It); �D; �D)

+�
X
n2Gs

�(kus � unk; �S ; �S)]; (10)

2For illustration, we consider a gradient-based formulation
with a �rst order smoothness term applied to the norm of the
local ow di�erence.
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where, in the case of binary line processes, � is the
truncated quadratic shown in Figure 1.3 Notice that
this is identical to a robust estimation formulation with
the truncated quadratic as the estimator.

From Robust Estimators to Line Processes:
For certain choices of robust estimators, we can convert
a robust estimation problem into an equivalent prob-
lem involving binary or analog outlier processes (for a
detailed treatment see [1, 8]). This allows spatial inter-
actions between line processes to be explicitly modeled.
Take, for example, a robust formulation of optical ow,
E(u; v), where � is the Lorentzian estimator:
X
s2S

[�(Ixus + Iyvs + It; �1) + �
X
n2Gs

�(kus � unk; �2)]:

We can derive an equivalent cost function, E(u; d; l),
containing analog line process, z(x), [1, 8]:

X
s2S

[(1� z(d))(Ixu+ Iyv + It)
2 + P (d)

+ �
X
n2Gs

[(1� z(l))kus � unk2 + P (l)]];

where P (x) is a \penalty" term and d; l � 0. In
the case of the Lorentzian estimator the outlier process
z(x) is de�ned as:

z(x) = 1� 1

1 + x
:

5 A Robust Gradient Method

We take as an example the robust gradient-based for-
mulation in equation (7) with the Lorentzian as the
estimator. Unlike the least-squares formulation, the
robust objective function, E(u; v), may be non-convex.
A local minimum, however, can be found using Simul-
taneous Over-Relaxation (SOR). The iterative update
equation for minimizing E at step n+1 is simply [2]4:

u(n+1)
s = u(n)s � !

1

T (us)

@E

@us
;

where 0 < ! < 2 is an overrelaxation parameter that
is used to overcorrect the estimate of u(n+1) at stage
n + 1. The �rst partial derivative of the robust ow
equation (7) is simply:

@E

@us
=

X
s2S

[�Ix (Ixu+ Iyv + It; �1)

+
X
n2Gs

 (us � un; �2)];

3Geman and Reynolds [3] showed that this approach can be
generalized to analog line processes that assume continuous non-
negative values.

4Only the equations for the horizontal component of the ow
are show; the treatment of the vertical component is identical.

where  (x) = @�=@x.
The term T (us) is an upper bound on the second

partial derivatives of E which implies:

T (us) =
�I2x
�21

+
4

�22
� @2E

@u2s
; 8s 2 S:

5.1 Graduated Non-Convexity

We now turn to the problem of �nding a globally op-
timal solution when the function is non-convex. We
can construct a convex objective function by choos-
ing �1 and �2 to be su�ciently large so that the Hes-
sian matrix of E at each point in the image is positive
de�nite. These �i determine the point at which mea-
surements are considered outliers; that is, the point at
which the inuence of the measurements begins to de-
crease. This occurs when the derivative of  (x) equals
zero or x = �p2�: For the convex approximation we
take �i = �i=

p
2, where �i is the largest expected out-

lier. The minimum of this convex formulation is readily
obtained using SOR.
We use the Graduated Non-Convexity (GNC) con-

tinuation method of Blake and Zisserman [2] to track
the minimum over a sequence of objective functions
with decreasing values for the �i which gradually in-
troduce discontinuities in the data and spatial terms.
The SOR algorithm is used to converge to the mini-
mum for each new value of �i. The minimum values
for the �i are determined from prior expectations of
motion discontinuities and sensor noise.5

6 Experimental Results

We have conducted a number of experiments using syn-
thetic and natural image sequences to compare the per-
formance of the least-squares and robust formulations
of the optical ow equation (7). All experiments were
performed using 200 iterations6 of each algorithm. The
parameter � was empirically determined and remained
unchanged for all the experiments: � = 10 for the
robust-gradient approach, and � = 50 for the least-
squares approach7. The spatial and temporal deriva-
tives (Ix; Iy ; It) were estimated using simple image dif-
ferencing and the images were pre�ltered with a Lapla-
cian.

6.1 Synthetic Sequence

The �rst experiment involves a synthetic sequence con-
taining two textured surfaces, one which is stationary

5A coarse-to-�ne strategy for coping with large motions is
described in [1].

6An iteration involves the updating of every site in the ow
�eld.

7The di�erent values of � are due to the di�erent � functions
used; that is, the quadratic for the least-squares approach, and
the Lorentzian for the robust-gradient method.
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u v

Figure 2: E�ect of robust data term, (10% uniform
noise). (top) Least-squares. (middle) Quadratic data
and robust smoothness. (bottom) Robust formulation.

and one which is translating one pixel to the left. The
second image in the sequence has been corrupted with
10% uniform random noise. To evaluate the e�ect of
the robust formulation of the data and smoothness
terms, we compare the performance of three di�erent
formulations: least-squares (Horn and Schunck), a ver-
sion with a quadratic data term and robust smoothness
term (eg. Blake and Zisserman), and the fully robust
formulation.

The results are illustrated in Figure 2. The left col-
umn shows the horizontal motion and the right column
shows the vertical motion recovered by each of the ap-
proaches (black = �1 pixel, white = 1 pixel, gray = 0
pixels). Figure 2 (top) shows the noisy, but smooth,
results obtained by least-squares. Figures 2 (middle)
shows the result of introducing a robust smoothness
term alone; the recovered ow is piecewise smooth, but
the gross errors in the data produce spurious motion
discontinuities. Finally, Figure 2 (bottom) shows the

a b

Figure 3: Outliers in the smoothness and data
terms, (10% uniform noise). a) Flow discontinuities.
b) Data outliers.

improvement realized when both the data and spatial
terms are robust.

We can detect outliers where the �nal values of
the data coherence and spatial smoothness terms are
greater than the outlier thresholds

p
2�1 and

p
2�2.

Motion discontinuities are simply outliers with respect
to spatial smoothness (Figure 3a). A large number of
image measurements are treated as outliers by the data
term; especially when the motion is large (Figure 3b).

6.2 The Pepsi Sequence

We next consider a natural image sequence in which
a Pepsi can and textured background move approxi-
mately 0:8 and 0:35 pixels to the left between frames
respectively (Figure 4, top left). Figure 4 (bottom)
shows that the ow recovered with the robust formu-
lation does an excellent job of preserving sharp motion
discontinuities. Figure 4 (top right) shows the loca-
tions where the smoothness constraint is violated (ie.
the change in ow across the boundary is treated as an
outlier). The boundaries correspond well to the phys-
ical boundaries of the can.

6.3 The Tree Sequence

Finally, we consider a more complex example with
many discontinuities and motion greater than a pixel.
The �rst 233 � 256 image in the SRI tree sequence
is seen in Figure 5a. As expected, the least-squares
ow estimate (Figure 5b) su�ers from over-smoothing.8

The robust ow, shown in Figure 5c exhibits sharp mo-
tion boundaries, yet still recovers the smoothly varying
ow of the ground plane. Figure 5d shows the motion
discontinuities where the outlier threshold is exceeded
for the smoothness constraint.

8Only the horizontal component of the ow is shown.
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a b c d

Figure 5: The SRI Tree Sequence. a) First intensity image. b) Least-squares (horizontal component). c)
Robust gradient. d) Spatial outliers.

Figure 4: The Pepsi Sequence. Image 1 (top left);
Robust ow �eld (u; v) (bottom left and right respec-
tively); Spatial smoothness outliers (top right).

7 Conclusion

This paper has considered the issues of robustness re-
lated to the recovery of optical ow with motion dis-
continuities. In this regard, it is important to recognize
the generality of the problems posed by motion discon-
tinuities; measurements are corrupted whenever infor-
mation is pooled from a spatial neighborhood which
spans a motion boundary. This applies to both the
data conservation and spatial coherence assumptions.
These violations of the constraints cause problems for
the standard least-squares formulations of optical ow.
By recasting these formulations within our robust esti-
mation framework, erroneous measurements at motion
boundaries are treated as outliers and their inuence
is reduced.

Finally, it should be noted that the robust estima-
tion framework has more general applicability than the
recovery of optical ow. It provides a general frame-
work for dealing with model violations which can be
applied to a wide class of problems in early vision.
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