Announcements

- · Guest lecture today: Aseem Agarwala
- Final project out today
 - you and your partner must submit a proposal by this Friday

Today's Reading

- <u>Alexei A. Efros</u> and <u>Thomas K. Leung</u>, "Texture Synthesis by Nonparametric Sampling," Proc. International Conference on Computer Vision (ICCV), 1999.
 - http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.pdf

Markov Chains

Markov Chain

- a sequence of random variables $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$
- \mathbf{x}_t is the **state** of the model at time t

$$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5$$

Markov assumption: each state is dependent only on the previous one

、 、

- dependency given by a conditional probability:

$$p(\mathbf{x}_t | \mathbf{x}_{t-1})$$

• The above is actually a first-order Markov chain

$$p(\mathbf{x}_t | \mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-N})$$

Text synthesis

Create plausible looking poetry, love letters, term papers, etc.

Most basic algorithm

- 1. Build probability histogram
 - find all blocks of N consecutive words/letters in training documents
 - compute probability of occurance $\,p(\mathbf{x}_t|\mathbf{x}_{t-1},\ldots,\mathbf{x}_{t-(n-1)})\,$
- 2. Given words $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{k-1}$ compute \mathbf{x}_k by sampling from $p(\mathbf{x}_t | \mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-(n-1)})$

Example on board...

[Scientific American, June 1989, Dewdney]

"I Spent an Interesting Evening Recently with a Grain of Salt"

- Mark V. Shaney (computer-generated contributor to UseNet News group called net.singles)

Output of 2nd order word-level Markov Chain after training on 90,000 word philosophical essay:

"Perhaps only the allegory of simulation is unendurable--more cruel than Artaud's Theatre of Cruelty, which was the first to practice deterrence, abstraction, disconnection, deterritorialisation, etc.; and if it were our own past. We are witnessing the end of the negative form. But nothing separates one pole from the very swing of voting "rights" to electoral...

Modeling Texture

What is texture?

- · An image obeying some statistical properties
- · Similar structures repeated over and over again
- · Often has some degree of randomness

Markov Random Field A Markov random field (MRF) · generalization of Markov chains to two or more dimensions. First-order MRF: • probability that pixel X takes a certain value given the values of neighbors A, B, C, and D: A D XB $P(\mathbf{X}|\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D})$ С · Higher order MRF's have larger neighborhoods * ٠ ٠ ٠ * ٠ ٠ X * X . • * . * * * * ٠ * ٠ *

Their Philosophy

The "Corrupt Professor's Algorithm":

- Plagiarize as much of the source image as you can
- Then try to cover up the evidence

Rationale:

Texture blocks are by definition correct samples of texture so
problem only connecting them together

Texture Transfer

Take the texture from one object and "paint" it onto another object

- This requires separating texture and shape
- That's HARD, but we can cheat
- Assume we can capture shape by boundary and rough shading

Then, just add another constraint when sampling: similarity to luminance of underlying image at that spot

Issues

- Imposes artificial grid of overlapping blocks on synthesized image, and greedily chooses blocks in left-right, top-bottom order
- Dynamic programming limits applicability to related problems.
- Solution: use graph cuts instead
- · Let's explore two examples, first.

Combining two images

More results & details

Sample

Image Quilting

Other applications of Image Analogies

- Texture synthesis
- Super-resolution
- Texture transfer
- Image colorization
- Simple filters (blur, emboss)
- More details
 - <u>http://mrl.nyu.edu/projects/image-analogies/</u>

Applications of Texture ModelingSuper-resolution• Freeman & Pasztor, 1999• Baker & Kanade, 2000Image/video compressionTexture recognition,segmentation• DeBonetRestoration• removing scratches, holes, filtering• Zhu et al.Art/entertainment