Announcements

- Project 2 artifacts—vote now!!
- Project 3 questions?
- · Start thinking about final project ideas, partners

Recovering 3D from images

So far, we've relied on a human to provide depth cues • parallel lines, reference points, etc.

How might we do this automatically?

What cues in the image provide 3D information?

Visual cues

Shading

Merle Norman Cosmetics, Los Angeles

Visual cues		
Shading		
Texture	Others: • Highlights • Shadows	
Focus	Silhouettes Inter-reflections	
Motion	Symmetry Light Polarization	
Shape From X X = shading, In this class v 	exture, focus, motion, e'll focus on the motion cue	

Mark Twain at Pool Table", no date, UCR Museum of Photography

an getting eye exam during immigration procedure at Ellis Island, c. 1905 - 1920 , UCR Museum of Phography

Stereograms online UCR stereographs http://www.cmp.ucr.edu/site/exhibitions/stereo/ The Art of Stereo Photography http://www.photostuff.co.uk/stereo.htm History of Stereo Photography http://www.rpi.edu/~ruiz/stereo_history/text/historystereog.html Double Exposure http://home.centurytel.net/s3dcor/index.html Stereo Photography <u>http://www.shortcourses.com/book01/chapter09.htm</u> 3D Photography links http://www.studyweb.com/links/5243.html National Stereoscopic Association http://204.248.144.203/3dLibrary/welcome.html Books on Stereo Photography <u>http://userwww.sfsu.edu/~hl/3d.biblio.html</u>

A free pair of red-blue stereo glasses can be ordered from Rainbow Symphony Inc http://www.rainbowsymphony.com/freestuff.html

Fundamental matrix

This matrix F is called

- the "Essential Matrix"
 - when image intrinsic parameters are known
- the "Fundamental Matrix"
 - more generally (uncalibrated case)

Can solve for F from point correspondences

• Each (p, p') pair gives one linear equation in entries of F

$$p'Fp = 0$$

- 8 points give enough to solve for F (8-point algorithm)
- see readings (Forsyth chapter 10.1) for more on this

Stereo matching algorithms

Match Pixels in Conjugate Epipolar Lines

- Assume brightness constancy
- · This is a tough problem
- Numerous approaches
 - dynamic programming [Baker 81,Ohta 85]
 - smoothness functionals
 - more images (trinocular, N-ocular) [Okutomi 93]
 - graph cuts [Boykov 00]
- A good survey and evaluation: http://www.middlebury.edu/stereo/

Stereo results

- Data from University of Tsukuba
- · Similar results on other images without ground truth

Scene

Ground truth

Stereo as energy minimization

$$D(x, y, d) = |\mathbf{I}(x, y) - \mathbf{J}(x + d, y)|$$

"neighborhood term" encouraging spatial smoothness

 $V(d_1, d_2) = \cos t$ of adjacent pixels with labels d1 and d2

 $= |d_1 - d_2|$ (or something similar)

$$E = \sum_{(x,y)} D(x, y, d_{x,y}) + \sum_{neighbors\ (x1,y1), (x2,y2)} V(d_{x1,y1}, d_{x2,y2})$$

Stereo reconstruction pipeline

Steps

- · Calibrate cameras
- · Rectify images
- · Compute disparity
- Estimate depth

What will cause errors?

- · Camera calibration errors
- · Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- · Low-contrast image regions

Stereo matching

Julesz-style Random Dot Stereogram

Real-time stereo

Nomad robot searches for meteorites in Antartica

real-time

stereo video

Used for robot navigation (and other tasks)

Several software-based real-time stereo techniques have been developed (most based on simple discrete search)