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Structure from motion

Reconstruct 
• Scene geometry
• Camera motion

UnknownUnknown
cameracamera

viewpointsviewpoints

Structure from motion
The SFM Problem

• Reconstruct scene geometry and camera motion from two or 
more images

Track
2D Features Estimate

3D Optimize
(Bundle Adjust) Fit Surfaces

SFM Pipeline

Structure from motion

Step 1:  Track Features
• Detect good features

– corners, line segments
• Find correspondences between frames

– Lucas & Kanade-style motion estimation
– window-based correlation

Structure from motion

Step 2:  Estimate Motion and Structure
• Simplified projection model, e.g.,  [Tomasi 92]
• 2 or 3 views at a time  [Hartley 00]
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Structure from motion
Step 3:  Refine Estimates

• “Bundle adjustment” in photogrammetry

Structure from motion

Step 4:  Recover Surfaces
• Image-based triangulation  [Morris 00, Baillard 99]
• Silhouettes  [Fitzgibbon 98]
• Stereo  [Pollefeys 99]

Poor mesh Good mesh
Morris and Kanade, 2000Morris and Kanade, 2000

Feature tracking
Problem

• Find correspondence between n features in f images

Issues
• What’s a feature?
• What does it mean to “correspond”?
• How can correspondence be reliably computed?

Feature detection

What’s a good feature?



3

Good features to track
Recall Lucas-Kanade equation:

When is this solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues l1 and l2 of ATA should not be too small
• ATA should be well-conditioned

– l1/ l2 should not be too large (l1 = larger eigenvalue)

These conditions are satisfied when min(l1, l2) > c

Feature correspondence
Correspondence Problem

• Given feature patch F in frame H, find best match in frame I

Solution
• Small displacement:  Lukas-Kanade

• Large displacement:  discrete search over (u,v)
– Choose match that minimizes SSD (or normalized correlation)

Find displacement (u,v) that minimizes SSD error over feature region

Feature distortion
Feature may change shape over time

• Need a distortion model to really make this work

Minimize with respect to Wx and Wy
• Affine model is common choice [Shi & Tomasi 94]

Find displacement (u,v) that minimizes SSD error over feature region

Tracking over many frames
So far we’ve only considered two frames
Basic extension to f frames

1. Select features in first frame
2. Given feature in frame i, compute position/deformation in i+1
3. Select more features if needed
4. i = i + 1
5. If i < f, go to step 2

Issues
• Discrete search vs. Lucas Kanade?

– depends on expected magnitude of motion
– discrete search is more flexible

• How often to update feature template?
– update often enough to compensate for distortion
– updating too often causes drift

• How big should search window be?
– too small:  lost features.  Too large:  slow
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Incorporating dynamics
Idea

• Can get better performance if we know something about the 
way points move

• Most approaches assume constant velocity

or constant acceleration

• Use above to predict position in next frame, initialize search

Modeling uncertainty
Kalman Filtering (http://www.cs.unc.edu/~welch/kalman/ )

• Updates feature state and Gaussian uncertainty model
• Get better prediction, confidence estimate

CONDENSATION 
(http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html )

• Also known as “particle filtering”
• Updates probability distribution over all possible states
• Can cope with multiple hypotheses

Probabilistic Tracking
Treat tracking problem as a Markov process

• Estimate p(xt |  zt, xt-1)
– prob of being in state xt given measurement zt and previous state xt-1

• Combine Markov assumption with Bayes Rule

prediction
(based on previous

frame and motion model)

measurement likelihood
(likelihood of seeing 

this measurement)

Approach
• Predict position at time t:
• Measure (perform correlation search or Lukas-Kanade) and 

compute likelihood
• Combine to obtain (unnormalized) state probability

Kalman filtering:  assume p(x) is a Gaussian

Key
• s = x (position)
• o = z (sensor)

[Schiele et al. 94], [Weiß et al. 94], [Borenstein
96], [Gutmann et al. 96, 98], [Arras 98]

initial state

prediction

measurement

posterior

prediction

Robot figures courtesy of Dieter Fox
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Modeling probabilities with samples

Allocate samples according to probability
• Higher probability—more samples

CONDENSATION  [Isard & Blake]

Initialization:  unknown position (uniform)

Measurement          posterior

CONDENSATION  [Isard & Blake]

Prediction:
• draw new samples from the PDF
• use the motion model to move the samples

CONDENSATION  [Isard & Blake]

Measurement          posterior
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Monte Carlo robot localization

Particle Filters [Fox, Dellaert, Thrun and collaborators]

CONDENSATION Contour Tracking

Training a tracker

CONDENSATION Contour Tracking

Red:  smooth drawing
Green:  scribble
Blue:  pause

Structure from motion
The SFM Problem

• Reconstruct scene geometry and camera positions from two 
or more images

Assume
• Pixel correspondence

– via tracking
• Projection model 

– classic methods are orthographic
– newer methods use perspective
– practically any model is possible with bundle adjustment



7

1212
XΠu
×××

=
33

SFM under orthographic projection

121212
tXΠu
××××

+=
33

image point projection
matrix

scene
point

image
offset

Trick
• Choose scene origin to be centroid of 3D points
• Choose image origins to be centroid of 2D points
• Allows us to drop the camera translation:

More generally:  weak perspective, para-perspective, affine

Shape by factorization [Tomasi & Kanade, 92]
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projection of n features in f images

W measurement M motion S shape

Key Observation:  rank(W) <= 3
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Factorization Technique
• W is at most rank 3 (assuming no noise)
• We can use singular value decomposition to factor W:

Shape by factorization [Tomasi & Kanade, 92]
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Singular value decomposition (SVD)
SVD decomposes any mxn matrix A as

Properties
• Σ is a diagonal matrix containing the eigenvalues of ATA

– known as “singular values” of A
– diagonal entries are sorted from largest to smallest

• columns of U are eigenvectors of AAT

• columns of V are eigenvectors of ATA

If A is singular (e.g., has rank 3)
• only first 3 singular values are nonzero
• we can throw away all but first 3 columns of U and V

• Choose M’ = U’,  S’ = Σ’V’T
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Factorization Technique
• W is at most rank 3 (assuming no noise)
• We can use singular value decomposition to factor W:

Shape by factorization [Tomasi & Kanade, 92]

• S’ differs from S by a linear transformation A:

• Solve for A by enforcing metric constraints on M
))(('' ASMASMW 1−==
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Metric constraints
Orthographic Camera

• Rows of Π are orthonormal:

Weak Perspective Camera
• Rows of Π are orthogonal:

Enforcing “Metric” Constraints
• Compute A such that rows of M have these properties

MAM ='
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Trick (not in original Tomasi/Kanade paper, but in followup work)

• Constraints are linear in AAT :

• Solve for G first by writing equations for every Πi in M
• Then G = AAT by SVD (since U = V)

( ) TTTTT where AAGGAA =∏∏=∏∏=∏∏=







''''

10
01

n2fn332fn2f
ESMW
××××

+=

Factorization with noisy data

Once again:  use SVD of W
• Set all but the first three singular values to 0
• Yields new matrix W’ 
• W’ is optimal rank 3 approximation of W

n2fn2fn2f
EWW
×××

+= '

Approach
• Estimate W’, then use noise-free factorization of W’ as before
• Result minimizes the SSD between positions of image features 

and projection of the reconstruction

Many extensions
Independently Moving Objects
Perspective Projection
Outlier Rejection
Subspace Constraints
SFM Without Correspondence
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Extending factorization to perspective
Several Recent Approaches

• [Christy 96]; [Triggs 96]; [Han 00]; [Mahamud 01]
• Initialize with ortho/weak perspective model then iterate

Christy & Horaud
• Derive expression for weak perspective as a perspective 

projection plus a correction term:

• Basic procedure:
– Run Tomasi-Kanade with weak perspective
– Solve for εi (different for each row of M)
– Add correction term to W, solve again (until convergence)
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Bundle adjustment
3D → 2D mapping

• a function of intrinsics K, extrinsics R & t
• measurement affected by noise

Log likelihood of K,R,t given {(ui,vi)}

Minimized via nonlinear least squares regression
• called “Bundle Adjustment”
• e.g., Levenberg-Marquardt

– described in Press et al., Numerical Recipes

Match Move
Film industry is a heavy consumer

• composite live footage with 3D graphics
• known as “match move”

Commercial products
• 2D3

– http://www.2d3.com/
• RealVis

– http://www.realviz.com/

Show video

Closing the loop
Problem

• requires good tracked features as input

Can we use SFM to help track points?
• basic idea:  recall form of Lucas-Kanade equation:

• with n points in f frames, we can stack into a big matrix
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Matrix on RHS has rank <= 3 !!
• use SVD to compute a rank 3 approximation
• has effect of filtering optical flow values to be consistent
• [Irani 99]
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