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Structure from motion
The SFM Problem

« Reconstruct scene geometry and camera motion from two or

more images
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Structure from motion

Step 1: Track Features
» Detect good features
— corners, line segments
» Find correspondences between frames
— Lucas & Kanade-style motion estimation
— window-based correlation

Structure from motion
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Step 2: Estimate Motion and Structure
« Simplified projection model, e.g., [Tomasi 92]
« 2or 3 views at a time [Hartley 00]




Structure from motion

Step 3: Refine Estimates

* “Bundle adjustment” in photogrammetry

Structure from motion

Poor mesh Good mesh
Morris and Kanade, 2000

Step 4: Recover Surfaces
» Image-based triangulation [Morris 00, Baillard 99]
» Silhouettes [Fitzgibbon 98]
« Stereo [Pollefeys 99]

Feature tracking

Problem
» Find correspondence between n features in f images

Issues
* What's a feature?
* What does it mean to “correspond”?
* How can correspondence be reliably computed?

Feature detection
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What's a good feature?




Good features to track

Recall Lucas-Kanade equation:

Shile SLiy|[u] _ [Tl
SIly Shily || v]| ™ S Iyl
AT A ATp

When is this solvable?
» ATA should be invertible
» ATA should not be too small due to noise
— eigenvalues |, and |, of ATA should not be too small
» ATA should be well-conditioned
— 14/ 1, should not be too large (I, = larger eigenvalue)

These conditions are satisfied when min(l;, I,) > ¢

Feature correspondence

Correspondence Problem
« Given feature patch F in frame H, find best match in frame /

Find displacement (u,v) that minimizes SSD error over feature region

S U+ uy+v) — H(z, y)]?

(zy)EFCT

Solution
+ Small displacement: Lukas-Kanade

Shi: SLiy|[u] _ [Tl
SIhly Sy || v| ™ S Iyl
AT A ATy

« Large displacement: discrete search over (u,v)
— Choose match that minimizes SSD (or normalized correlation)

Feature distortion

Feature may change shape over time
* Need a distortion model to really make this work

Find displacement (u,v) that minimizes SSD error over feature region
Y UWale. ). Wyle,p) - I ()2
(ry)ercd
Minimize with respect to W, and W,
+ Affine model is common choice [Shi & Tomasi 94]
We(z,y) = ax+by+c
Wy, y) = e+ fy+g

Tracking over many frames

So far we’ve only considered two frames

Basic extension to fframes
1. Select features in first frame
2. Given feature in frame i, compute position/deformation in i+1
3. Select more features if needed
4. i=i+1
5. Ifi<f gotostep2

Issues

« Discrete search vs. Lucas Kanade?
— depends on expected magnitude of motion
— discrete search is more flexible

* How often to update feature template?
— update often enough to compensate for distortion
— updating too often causes drift

* How big should search window be?
— too small: lost features. Too large: slow




Incorporating dynamics

Idea

« Can get better performance if we know something about the
way points move

» Most approaches assume constant velocity
Xit1 = X
Xi41 = 2%, — X1
or constant acceleration
Xip1 = X
Xi41 = 3%, —3%_1 + X2

« Use above to predict position in next frame, initialize search

Modeling uncertainty

Kalman Filtering ¢ )
« Updates feature state and Gaussian uncertainty model
« Get better prediction, confidence estimate

CONDENSATION
(

« Also known as “particle filtering”
« Updates probability distribution over all possible states
« Can cope with multiple hypotheses

Probabilistic Tracking

Treat tracking problem as a Markov process
» Estimate p(x, | z, x.4)
— prob of being in state x, given measurement z, and previous state x,

« Combine Markov assumption with Bayes Rule
p(xelze, xe—1) o p(zglxe) p(xef—1)

measurement likelihood prediction
(likelihood of seeing (based on previous
this measurement) frame and motion model)

Approach
+ Predict position at time t: p(x;|x;_1)
* Measure (perform correlation search or Lukas-Kanade) and
compute likelihood p{z¢|x;)
+ Combine to obtain (unnormalized) state probability

pxelae x-1)

Kalman filtering: assume p(x) is a Gaussian
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Key
+ s =x (position) [Schiele et al. 94], [WeiB et al. 94], [Borenstein

96], [Gutmann et al. 96, 98], [Arras 98]

+ 0=z (sensor) Robot figures courtesy of Dieter Fox




Modeling probabilities with samples
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Allocate samples according to probability
« Higher probability—more samples

CONDENSATION ([Isard & Blake]
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Prediction:
« draw new samples from the PDF
« use the motion model to move the samples

CONDENSATION ([Isard & Blake]
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Monte Carlo robot localization

S

Particle Filters [Fox, Dellaert, Thrun and collaborators]

CONDENSATION Contour Tracking

Training a tracker

CONDENSATION Contour Tracking

Red: smooth drawing
. scribble
Blue: pause

Structure from motion

The SFM Problem

« Reconstruct scene geometry and camera positions from two
or more images

Assume
« Pixel correspondence
— via tracking
« Projection model
— classic methods are orthographic
— newer methods use perspective
— practically any model is possible with bundle adjustment




SFM under orthographic projection

u=IIX+t

2x1 2x33x1  2x1

image point projection scene image
matrix point  offset

More generally: weak perspective, para-perspective, affine

Trick
» Choose scene origin to be centroid of 3D points
» Choose image origins to be centroid of 2D points
+ Allows us to drop the camera translation:

u=IIX

2x1 2x3 3x1

Shape by factorization [romasi & kanade, 92)

projection of N features in one image:

[“l u, - “n]:H[Xl X, - Xn]
2xn 2x3 3xn
projection of N features in fimages

uj u} - u| [T

2 2 2 2

u; u, --ouy I

Lo N el [Xl X, - Xn]

' - 3xn

u uf ol '

2f xn 2fx3

W measurement M motion S shape

Key Observation: rank(W) <= 3

Shape by factorization [romasi & kanade, 921

known— M S ——solve for
2fx3 3xn

Factorization Technique
« W is at most rank 3 (assuming no noise)
« We can use singular value decomposition to factor W:

W =M'S'

2f xn 2f x3 3xn

Singular value decomposition (SVD)

SVD decomposes any mxn matrix A as

A=U V'
mxn  mxm mxn nxn
Properties
» X is a diagonal matrix containing the eigenvalues of ATA
— known as “singular values” of A
— diagonal entries are sorted from largest to smallest
+ columns of U are eigenvectors of AAT
« columns of V are eigenvectors of ATA
If A is singular (e.g., has rank 3)
« only first 3 singular values are nonzero
« we can throw away all but first 3 columns of U and V
A = Uv 3! VvT
mxn 3xm 3x3 3xn

* Choose M'=U’, §'=3%VT




Shape by factorization [romasi & kanade, 92)

known— M S ——solve for
2fx3 3xn

Factorization Technique
« W is at most rank 3 (assuming no noise)
« We can use singular value decomposition to factor W:

W =M'S'

2f xn 2fx3 3xn
« §’ differs from S by a linear transformation A:

W =M'S'= (MA ")(AS)

« Solve for A by enforcing metric constraints on M

Metric constraints

Orthographic Camera Lo
« Rows of IT are orthonormal: H H f= {0 1}

Weak Perspective Camera « 0
« Rows of IT are orthogonal: H H "= L) *}

Enforcing “Metric” Constraints
« Compute A such that rows of M have these properties

M'A =M
Trick (not in original Tomasi/Kanade paper, but in followup work)
+ Constraints are linear in AAT :

Ll) ﬂ=HHT=H'A(ATH'T)=H'GH'T where G = AAT

= Solve for G first by writing equations for every IT; in M
* Then G = AAT by SVD (since U = V)

Factorization with noisy data

W=MS + E

2f xn 2f x3 3xn 2f xn

Once again: use SVD of W
« Set all but the first three singular values to 0
« Yields new matrix W’
* W’ is optimal rank 3 approximation of W
W =W'+ E
2f xn 2f xn 2f xn
Approach
< Estimate W’, then use noise-free factorization of W’ as before

« Result minimizes the SSD between positions of image features
and projection of the reconstruction

Many extensions

Independently Moving Objects
Perspective Projection

Outlier Rejection

Subspace Constraints

SFM Without Correspondence




Extending factorization to perspective

Bundle adjustment

Several Recent Approaches
+ [Christy 96]; [Triggs 96]; [Han 00]; [Mahamud 01]
« Initialize with ortho/weak perspective model then iterate

Christy & Horaud

» Derive expression for weak perspective as a perspective
projection plus a correction term:

u, =(+¢)u,
k-X

where &=——
t

and [k ¢, ]is third row of projection matrix

» Basic procedure:
— Run Tomasi-Kanade with weak perspective
— Solve for g (different for each row of M)
— Add correction term to W, solve again (until convergence)

3D — 2D mapping
« a function of intrinsics K, extrinsics R & t
* measurement affected by noise

u; FIK,R t,x;)+n; =a;+n;, n;~N(,0)
v; = g(K,R,t,x;) +m; =0; +my, m; ~N(0,0)

Log likelihood of K,R,t given {(u,V,)}
C=—log L =3 (u; — %) /0] + (v; — 9;)° /o7
i

Minimized via nonlinear least squares regression
« called “Bundle Adjustment”
« e.g., Levenberg-Marquardt
— described in Press et al., Numerical Recipes

Match Move

Closing the loop

Film industry is a heavy consumer
« composite live footage with 3D graphics
» known as “match move”

Commercial products
+ 2D3

* RealVis

Show video

Problem
« requires good tracked features as input

Can we use SFM to help track points?
« basic idea: recall form of Lucas-Kanade equation:

a, b|u;|_|8;
b e v | |hy
« with n points in f frames, we can stack into a big matrix

5 ey

2nx2n 2nxf 2nxf

Matrix on RHS has rank <=3 !!

« use SVD to compute a rank 3 approximation
« has effect of filtering optical flow values to be consistent
« [lrani 99]




From [Irani 99]
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