Announcements

- Project 2
 - more signup slots
 - questions
- Picture taking at end of class

From images to objects

What Defines an Object?

- · Subjective problem, but has been well-studied
- · Gestalt Laws seek to formalize this
 - proximity, similarity, continuation, closure, common fate
 - see notes by Steve Joordens, U. Toronto

Image Segmentation

We will consider different methods

Already covered:

- Intelligent Scissors (contour-based)
- Hough transform (model-based)

This week:

- · K-means clustering (color-based)
- EM
- Mean-shift
- Normalized Cuts (region-based)

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color

photoshop demo

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
 Solve this by reducing the number of colors to K and mapping each pixel to the closest color

 photoshop demo

Here's what it looks like if we use two colors

K-means clustering

K-means clustering algorithm

- 1. Randomly initialize the cluster centers, $c_1, ..., c_K$
- 2. Given cluster centers, determine points in each cluster • For each point p, find the closest c_i. Put p into cluster i
- Given points in each cluster, solve for c_i
 Set c_i to be the mean of points in cluster i
- Set C_i to be the mean of points in cluster.
 If c_i have changed, repeat Step 2
- 4. If C_i have changed, repeat Step 2

Java demo: http://www.cs.mcgill.ca/~bonnef/project.html

Properties

- Will always converge to some solution
- · Can be a "local minimum"
 - does not always find the global minimum of objective function:

 $\sum_{\text{clusters } i} \quad \sum_{\text{points p in cluster } i} \|p-c_i\|^2$

Probabilistic clustering

Basic questions

- what's the probability that a point **x** is in cluster m?
- · what's the shape of each cluster?

K-means doesn't answer these questions

Basic idea

- instead of treating the data as a bunch of points, assume that they are all generated by sampling a continuous function
- This function is called a generative model

 defined by a vector of parameters θ

EM details

E-step

- compute probability that point ${\boldsymbol x}$ is in blob i, given current guess of ${\boldsymbol \theta}$

$$P(b|x, \mu_b, V_b) = \frac{\alpha_b P(x|\mu_b, V_b)}{\sum_{i=1}^{K} \alpha_i P(x|\mu_i, V_i)}$$

M-step

compute probability that blob b is selected

$$\alpha_b^{new} = \frac{1}{N} \sum_{i=1}^{N} P(b|x_i, \mu_b, V_b) \qquad \text{N data points}$$

• mean of blob b

$$\mu_i^{new} = \frac{\sum_{i=1}^N x_i P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^N x_i P(b|x_i, \mu_b, V_b)}$$

$$\overset{\mu_b}{=} \frac{\sum_{i=1}^N P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^N P(b|x_i, \mu_b, V_b)}$$

• covariance of blob b $V_b^{new} = \frac{\sum_{i=1}^N (x_i - \mu_b^{new})(x_i - \mu_b^{new})^T P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^N P(b|x_i, \mu_b, V_b)}$

Applications of EM

Turns out this is useful for all sorts of problems

- any clustering problem any model estimation problem
- missing data problems
- finding outliers
- segmentation problems
- segmentation problems
 segmentation based on color
 - segmentation based on color
 segmentation based on motion
 - foreground/background separation
- ...

Problems with EM

Local minima

Need to know number of segments

Need to choose generative model

Interpretation as a Dynamical System THE PROPERTY PROPERTY. Treat the links as springs and shake the system · elasticity proportional to cost · vibration "modes" correspond to segments

Normalize Cut in Matrix Form

- **W** is the cost matrix : $\mathbf{W}(i, j) = c_{i,j}$;
- **D** is the sum of costs from node i: $\mathbf{D}(i,i) = \sum_{j} \mathbf{W}(i,j); \quad \mathbf{D}(i,j) = 0$

Can write normalized cut as:

$$Ncut(A, B) = \frac{\mathbf{y}^{\mathsf{T}}(\mathbf{D} - \mathbf{W})\mathbf{y}}{\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y}}, \text{ with } \mathbf{y}_{i} \in \{1, -b\}, \mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{l} = 0.$$

- Solution given by "generalized" eigenvalue problem:
- **(D**-W)y = λ Dy Solved by converting to standard eigenvalue problem: $\mathbf{D}^{-\frac{1}{2}}(\mathbf{D} \mathbf{W})\mathbf{D}^{-\frac{1}{2}}\mathbf{z} = \lambda \mathbf{z}$, where $\mathbf{z} = \mathbf{D}^{\frac{1}{2}}\mathbf{y}$
- · optimal solution corresponds to second smallest eigenvector •
- for more details, see
- J. Shi and J. Malik, <u>Normalized Cuts and Image Segmentation</u>, IEEE Conf. Computer Vision and Pattern Recognition(CVPR), 1997
- ww.cs.washington.edu/education/courses/455/0

