Announcements
• CS accounts
• Project 1 is out today
 – help session at the end of class

From images to objects
What Defines an Object?
• Subjective problem, but has been well-studied
• Gestalt Laws seek to formalize this
 – proximity, similarity, continuation, closure, common fate
 – see notes by Steve Joordens, U. Toronto

Image Segmentation
Today’s Readings
• Intelligent Scissors

Extracting objects
How could this be done?
Image Segmentation

Many approaches proposed
• color cues
• region cues
• contour cues

We will consider a few of these

Today:
• Intelligent Scissors (contour-based)

Intelligent Scissors

Approach answers a basic question
• Q: how to find a path from seed to mouse that follows object boundary as closely as possible?
• A: define a path that stays as close as possible to edges

Questions
• How to define costs?
• How to find the path?
Path Search (basic idea)

Graph Search Algorithm
• Computes minimum cost path from seed to all other pixels

How does this really work?

Treat the image as a graph

Graph
• node for every pixel \(p \)
• link between every adjacent pair of pixels, \(p,q \)
• cost \(c \) for each link

Note: each link has a cost
• this is a little different than the figure before where each pixel had a cost

Defining the costs

Treat the image as a graph

Want to hug image edges: how to define cost of a link?
• the link should follow the intensity edge
 – want intensity to change rapidly \(\perp \) to the link
• \(c = |\text{difference of intensity \(\perp \) to link}| \)

Defining the costs

\(c \) can be computed using a cross-correlation filter
• assume it is centered at \(p \)

Also typically scale \(c \) by it’s length
• set \(c = (\text{max}\{\text{filter response}\}) \times \text{length}(c) \)
 – where max = maximum |filter response| over all pixels in the image
Defining the costs

c can be computed using a cross-correlation filter
• assume it is centered at p
Also typically scale c by it’s length
• set \(c = (\text{max} - |\text{filter response}|) \times \text{length}(c) \)
 – where max = maximum filter response over all pixels in the image

Dijkstra’s shortest path algorithm

Algorithm
1. init node costs to \(\infty \), set \(p = \text{seed point}, \text{cost}(p) = 0 \)
2. expand \(p \) as follows:
 for each of \(p \)'s neighbors \(q \) that are not expanded
 » set \(\text{cost}(q) = \min(\text{cost}(p) + c_{pq}, \text{cost}(q)) \)
 » if \(q \)'s cost changed, make \(q \) point back to \(p \)
 » put \(q \) on the ACTIVE list (if not already there)
3. set \(r = \text{node with minimum cost on the ACTIVE list} \)
4. repeat Step 2 for \(p = r \)
Algorithm
1. init node costs to ∞, set $p = \text{seed point}$, cost(p) = 0
2. expand p as follows:
 - for each of p’s neighbors q that are not expanded
 - set cost(q) = min(cost(p) + c_{pq}, cost(q))
 - if q’s cost changed, make q point back to p
 - put q on the ACTIVE list (if not already there)
3. set $r = \text{node with minimum cost on the ACTIVE list}$
4. repeat Step 2 for $p = r$

Dijkstra’s shortest path algorithm

Properties
- It computes the minimum cost path from the seed to every node in the graph. This set of minimum paths is represented as a tree
- Running time, with N pixels:
 - $O(N^2)$ time if you use an active list
 - $O(N \log N)$ if you use an active priority queue (heap)
 - takes \ll second for a typical (640x480) image
- Once this tree is computed once, we can extract the optimal path from any point to the seed in $O(N/2)$ time.
- it runs in real-time as the mouse moves
- What happens when the user specifies a new seed?

Results

http://www.cs.washington.edu/education/courses/455/03wi/projects/project1/artifacts/index.html