Announcements

Projective geometry

» Project 3 went out on Monday

Ames Room

Readings
Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Chapter 23:
Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992,
pp. 463-534 (for this week, read 23.1 - 23.5, 23.10)
- available online: http: cs.cmu dy.pdf
Forsyth, Chapter 3

Projective geometry—what’s it good for?

Applications of projective geometry

Uses of projective geometry
« Drawing
* Measurements
» Mathematics for projection
» Undistorting images
« Focus of expansion
» Camera pose estimation, match move
+ Object recognition

Vermeer's Music Lesson




Measurements on planes
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Approach: unwarp then measure
What kind of warp is this?

Image rectification
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To unwarp (rectify) an image
« solve for homography H given p and p’
« solve equations of the form: wp’ = Hp
— linear in unknowns: w and coefficients of H
— H is defined up to an arbitrary scale factor
— how many points are necessary to solve for H?
work out on board

Solving for homographies
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Solving for homographies
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Linear least squares
« Since his only defined up to scale, solve for unit vector h
« Minimize [[AR]?
laR)? = (AD)TARh =hTATARL
« Solution: h = eigenvector of ATA with smallest eigenvalue
« Works with 4 or more points




The projective plane

Why do we need homogeneous coordinates?

 represent points at infinity, homographies, perspective
projection, multi-view relationships

What is the geometric intuition?
« apointin the image is a ray in projective space

v

(sx,sy.s)

z X image plane

+ Each point (x,y) on the plane is represented by a ray (sx,sy,s)
— all points on the ray are equivalent: (x,y, 1) = (sx, sy, s)

Projective lines

What does a line in the image correspond to in
projective space?

* Aline is a plane of rays through origin
— all rays (x,y,z) satisfying: ax+by+cz=0

X
in vector notation:  0=[a b C]{}}

I p

« Aline is also represented as a homogeneous 3-vector |

Point and line duality

« Aline | is a homogeneous 3-vector
« Itis L to every point (ray) p on the line: | p=0

What is the line | spanned by rays p, and p, ?
clisltop,andp, = I=p;xp,
« lis the plane normal

What is the intersection of two lines I; and I, ?
e pislttolyandl, = p=1l,xl,

Points and lines are dual in projective space

« given any formula, can switch the meanings of points and
lines to get another formula

Ideal points and lines

. ! .
image plane z ~~. Iimage plane

Ideal point (“point at infinity”)
* p=(x, Y, 0)— parallel to image plane
« It has infinite image coordinates

Ideal line
* |=(a, b, 0) - parallel to image plane
« Corresponds to a line in the image (finite coordinates)




Homographies of points and lines

3D projective geometry

Computed by 3x3 matrix multiplication
* To transform a point: p’ = Hp
* To transform a line: Ip=0 — I’'p’=0
—0=Ilp=IH'Hp = IH'p’ = I = H"
— lines are transformed by postmultiplication of H-!

These concepts generalize naturally to 3D
* Homogeneous coordinates
— Projective 3D points have four coords: P = (X,Y,Z,W)
« Duality
— Aplane N is also represented by a 4-vector
— Points and planes are dual in 3D: N P=0
* Projective transformations
— Represented by 4x4 matrices T: P’=TP, N’ =NT-

3D to 2D: “perspective” projection

Vanishing points
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What is not preserved under perspective projection?

—_N

What IS preserved?

image plane

vanishing point

camera
center

ground plane

Vanishing point
« projection of a point at infinity




Vanishing points (2D)

image plane

vanishing point

camera
center

line on ground plane

Vanishing points

image plane
vanishing point V
center
C "
line on ground plane
line on ground plane
Properties

« Any two parallel lines have the same vanishing point v
« The ray from C through v is parallel to the lines
« Animage may have more than one vanishing point

Vanishing lines

Multiple Vanishing Points
« Any set of parallel lines on the plane define a vanishing point
» The union of all of these vanishing points is the horizon line
— also called vanishing line
* Note that different planes define different vanishing lines

Vanishing lines

Multiple Vanishing Points

« Any set of parallel lines on the plane define a vanishing point
« The union of all of these vanishing points is the horizon line

— also called vanishing line
» Note that different planes define different vanishing lines




Computing vanishing points
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Properties v=nP,
« P_is a point at infinity, v is its projection
« They depend only on line direction
« Parallel lines Py + tD, P, + tD intersect at P,

Computing vanishing lines

N

ground plane

Properties
« lis intersection of horizontal plane through C with image plane
« Compute | from two sets of parallel lines on ground plane
« All points at same height as C project to |
— points higher than C project above |
« Provides way of comparing height of objects in the scene

Fun with vanishing points




Perspective cues
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Perspective cues

Perspective cues
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Comparing heights
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Measuring height

Computing vanishing points (from lines)

Intersect p,q, with p,q,
v=(p1 % q1) x (p2 x q2)

Least squares version
« Better to use more than two lines and compute the “closest” point of
intersection
« See notes by Bob Collins for one good way of doing this:
— http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

ground plane

Compute Y from image measurements
« Need more than vanishing points to do this

The cross ratio

A Projective Invariant

« Something that does not change under projective transformations
(including perspective projection)

The cross-ratio of 4 collinear points
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[P~ P [P, P
Can permute the point ordering [P, —P,| P, — Py

« 41 =24 different orders (but only 6 distinct values)
This is the fundamental invariant of projective geometry




Measuring height
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scene cross ratio
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Measuring height

vanishing line (horizon)
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Measuring height

vanishing line (horizon)

What if the point on the ground plane by is not known?
Here the guy is standing on the box, height of box is known

Use one side of the box to help find by as shown above

Measurements within reference plane

image plane

[T
reference plane

Solve for homography H relating reference plane to image plane
H maps reference plane (X,Y) coords to image plane (x,y) coords
« Fully determined from 4 known points on ground plane
— Option A: physically measure 4 points on ground
— Option B: find a square, guess the dimensions
— Option C: Note H = columns 1,2,4 projection matrix
» derive on board (this works assuming Z = 0)

Given (x, y), can find (X,Y) by H-'!

A



Criminisi et al., ICCV 99

Complete approach

* Load in an image

* Click on lines parallel to X axis

— repeat for Y, Z axes

« Compute vanishing points
Specify 3D and 2D positions of 4 points on reference plane
« Compute homography H
« Specify a reference height
« Compute 3D positions of several points
« Create a 3D model from these points
« Extract texture maps
* Output a VRML model

Vanishing points and projection matrix

* || *
m=|*||*
# || *
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: :[7‘71 T, T, 7T4]
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| T, T, W,
e m=M[ 0 0 0] =v,(Xvanishing point)
e similarly, n,=v,, m,=v,

o m, = l'[[O 00 1]T = projection of world origin
= [VX Vy V2 0]
Not So Fast! We only know v’s up to a scale factor

l'I=[aVX bv, cv, 0]

« Can fully specify by providing 3 reference points

3D Modeling from a photograph
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3D Modeling from a photograph




Camera calibration

Goal: estimate the camera parameters
» Version 1: solve for projection matrix
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» Version 2: solve for camera parameters separately
— intrinsics (focal length, principle point, pixel size)
— extrinsics (rotation angles, translation)
— radial distortion

Calibration: Basic Idea

Place a known object in the scene
« identify correspondence between image and scene
« compute mapping from scene to image

Issues
« must know geometry very accurately
« must know 3D->2D correspondence

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs
http://www.hpl.hp. p 1al/Bruce_Ci /ibr htm

Estimating the Projection Matrix

Place a known object in the scene
« identify correspondence between image and scene
« compute mapping from scene to image
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Direct Linear Calibration

X
u; mog Mol Moz Mo3 v
v | £ | mg myy miz mi3 ZI-
1 Mmog Mol Moo M3 1’

mooX; + ma1Y; + monZ; + mo3

mooX; + morY; + monZ; + mog
naeXi +mwnYi+miaZi + s

migoXi + ma1Y; + manZi + miga

i (oo X -+ ma1Y; + monZ; + maa) = mooXi + mo1Y; + moaZ; + moa
[0; (20X, + mo1 Vi + 10025 + 1m23) = migX; + mn1Y; +m12Z; + gz

oo

oL

moa

g3

mio R
-y —wiZi - || e | _ [0
—n¥ =nZ - || 2| T |0

mia

20

may

a2

mag

Direct Linear Calibration
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Can solve for m; by linear least squares
« use eigenvector trick that we used for homographies

Direct linear calibration

Advantages:

» Very simple to formulate and solve

« Once you know the projection matrix, can compute intrinsics

and extrinsics using matrix factorizations

Disadvantages?

» Doesn’t model radial distortion

» Hard to impose constraints (e.g., known focal length)

« Doesn’t minimize the right error function

For these reasons, nonlinear methods are preferred
» Define error function E between projected 3D points and image positions
— E is nonlinear function of intrinsics, extrinsics, radial distortion
« Minimize E using nonlinear optimization techniques

— e.g., variants of Newton’s method (e.g., Levenberg Marquart)

Alternative: Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
« Only requires a plane
« Don't have to know positions/orientations
« Good code available online!

— Intel's OpenCYV library: http:/www.intel. v/mr v/

— Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
— Zhengyou Zhang's web site: http://research.mi com/~zhang/Calib/




