Announcements

* Project1 due Tuesday

Motion Estimation

http://www.sandlotscience.com/Distortions/Breathing objects.htm

http://www.sandlotscience.com/Ambiguous/barberpole.htm

Today’s Readings
Trucco & Verri, 8.3 — 8.4 (skip 8.3.3, read only top half of p. 199)
Supplemental:

— R.Bergen, P. Anandan, K.J. Hanna, and R. Hingorani. Hierarchical model-based motion
estimation. European Conf. on Computer Vision (ECCV), 1992

— http://www.c: ion/courses/576/03sp: i 1_eccv92.pdf
* Numerical Recipes (Newton-Raphson), 9.4 (first four pages)
- ulib, 4.pdf

Why estimate motion?

Lots of uses

Track object behavior

Correct for camera jitter (stabilization)
Align images (mosaics)

3D shape reconstruction

Special effects

Optical flow

Problem definition: optical flow

./‘ .\ ° .
o> z o .
H(z,y) I(z,y)

How to estimate pixel motion from image H to image 1?

« Solve pixel correspondence problem
— given a pixel in H, look for[nearby]pixels of the[same colo} in |

Key assumptions
» color constancy: a pointin H looks the same in |
— For grayscale images, this is brightness constancy
« small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

(x.y)
displacement = (w. v)
w oy F o
H(z,y) I(z,y)

Let’s look at these constraints more closely
« brightness constancy: Q: what’s the equation?

« small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of |
p = . al, ar, 5
I(x+u, y+v) = I(2, y)—i—mu—l—mv—i—hugher order terms

~ Iz y)+ %u + %v

Optical flow equation

Combining these two equations
O=1I(z+uy+v)— H(zy)
e I(2, y) 4+ Ivw + Tyv — H(z, y)
= (I(x,y) — H(z.y)) + Leu 4+ Lyw
ko I 4+ L+ Lw
kI +VI-[u v

In the limit as u and v go to zero, this becomes exact

0=1+VI-[3 ¥

shorthand: I,

=
= Oz

Optical flow equation

O=IL+VI-[uv]
Q: how many unknowns and equations per pixel?
Intuitively, what does this constraint mean?

« The component of the flow in the gradient direction is determined
» The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/barberpole.htm

Aperture problem

Aperture problem

Solving the aperture problem

Basic idea: assume motion field is smooth

Horn & Schunk: add smoothness term
[[G+ 91w)24 22(Vul P+ 1902 do dy

Lukas & Kanade: assume locally constant motion
« pretend the pixel's neighbors have the same (u,v)
— If we use a 5x5 window, that gives us 25 equations per pixel!
0 = I(p;) + VI(p3) - [w v]

» works better in practice than Horn & Schunk

Many other methods exist. Here’s an overview:
« Barron, J.L., Fleet, D.J., and Beauchemin, S, Performance of optical flow
techniques, International Journal of Computer Vision, 12(1):43-77, 1994.
http://www.c: ington.edu/educati Irses/576/0: I 192performance.pdf

Lukas-Kanade flow

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0= I(p) + VI(p;) - [u v]

Li(p1) Iy(p1) I(p1)]
L(p2) Iy(p2) ||u|_ | I(p2)
H H kH H
L:(p25) Iy(pa2s) Ii(p2s) |
A d b
25x2 2x1 25x1

RGB version

How to get more equations for a pixel?
« Basicidea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel’'s neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!

0 = L(pp[0.1.2] + VI(p)[0.1.2] - [u 1]

L:(p1)[0] 1y(p1)[0] Ii(py)[0] ©
L(p)(1] Iy(p1)[1] I(p1)(1)
f.r-(P_l)[Q] !'_.;(13_1)[2] [“] 3 fr(l’})[2]
L(p25)[0] Iy(p25)[0] | L 1i(p2)[0]
Le(p2s)[1] Iy(p2s)[1] Ir(p25)(1]
I:(p2s)[2] Iy(p25)(2] Ti(p2s)(2] _
d b
[75x2 2x1 75x1

Lukas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad— b|]?
25x2 2X1 25x1

Solution: solve least squares problem
« minimum least squares solution given by solution (in d) of:

(ATA) d= ATh

2x2 2x1 2x1

Shi: SLiy|[u] _ [Tl
SIhly Sy || v| ™ S Iyl
AT A ATy

« The summations are over all pixels in the K x K window
« This technique was first proposed by Lukas & Kanade (1981)
— described in Trucco & Verri reading

Conditions for solvability

« Optimal (u, v) satisfies Lucas-Kanade equation

Shi: SLiy|[u] _ [Tl
SIhly Sy || v| ™ S Iyl
AT A ATy

When is This Solvable?
« ATA should be invertible
» ATA should not be too small due to noise
— eigenvalues 2, and A, of ATA should not be too small
+ ATA should be well-conditioned
— &4/ 1, should not be too large (A, = larger eigenvalue)

Eigenvectors of ATA

Az [Shle X
ATa=|Ell X
S Idy ¥

Il Iy | _ Iy _ . bi
wly X lyly] =X [Iy] [L) = 3 vIH(VD)
Suppose (x,y) is on an edge. What is ATA? derive on board
« gradients along edge all point the same direction
« gradients away from edge have small magnitude
(X vi(vn") = kvivi’
(Evievn™)vi = k|vIPvI
+ VTis an eigenvector with eigenvalue k||vI|*
» What's the other eigenvector of ATA?
— let N be perpendicular to ¥ I

(Xvi(vn")N=a

— N is the second eigenvector with eigenvalue 0
The eigenvectors of ATA relate to edge direction and magnitude

3

S vivn?
— large gradients, all the same
— large A4, small &,

Low texture region

S vivn?
— gradients have small magnitude
—small &,, small &,

High textured region

S vivn” N
— gradients are different, large magnitudes -
—large A4, large %,

Observation

This is a two image problem BUT
« Can measure sensitivity by just looking at one of the images!
« This tells us which pixels are easy to track, which are hard
— very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
» Suppose ATA is easily invertible
» Suppose there is not much noise in the image

When our assumptions are violated
* Brightness constancy is not satisfied
* The motion is not small
« A point does not move like its neighbors
— window size is too large
— what is the ideal window size?

Improving accuracy

Recall our small motion assumption
O=1I(z+u,y+v)— H(z,y)
Iz, y) + Leu+ Tyo — H(z, y)

This is not exact
« To do better, we need to add higher order terms back in:

B I(T,. y) + Lyu+]y‘U —+ higher order terms — H(ar. y)

14

This is a polynomial root finding problem

« Can solve using Newton’s method ID case
— Also known as Newton-Raphson method on board
— Today's reading (first four pages)
» http://www.ulib.org/webRc Numerical »okepdf/c9-4.pdf

+ Lukas-Kanade method does one iteration of Newton’s method
— Better results are obtained via more iterations

Iterative Refinement

Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence

Revisiting the small motion assumption

Is this motion small enough?
» Probably not—it's much larger than one pixel (2" order terms dominate)

* How might we solve this problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation

Gaussian pyramid of image H

u=2.5 pixels

u=10 pixels!

u=1.25 pixels -

Gaussian pyramid of image |

Coarse-to-fine optical flow estimation

- — un iterative L-K -

Iwarp & upsample

._’ run iterative L-K +——

Gaussian pyramid of image H Gaussian pyramid of image |

Optical flow result

Dewey morph

Robust methods

L-K minimizes a sum-of-squares error metric
« least squares techniques overly sensitive to outliers

Error metrics

quadratic

Mr) = »

truncated quadratic

Paplr) = {

Ar? if o] < ::.':
o otherwise

lorentzian

pote) = log (14 557

Robust optical flow
Robust Horn & Schunk

[[o491t D+ 220Vl 41V l?) da dy
Robust Lukas & Kanade

S pUe 4+ VI-[u v])

(w,y)eW

o

lorentzian flow detected outliers

first image quadratic flow
Reference
Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth
International Conf. on Computer Vision (ICCV), 1993, pp. 231-236
" o ;

http://www.cs.washington.edu/edt pdf

6

Motion tracking

Suppose we have more than two images

« How to track a point through all of the images?
— In principle, we could estimate motion between each pair of
consecutive frames
— Given point in first frame, follow arrows to trace out it's path

— Problem: DRIFT
» small errors will tend to grow and grow over time—the point will
drift way off course

Feature Tracking
+ Choose only the points (“features”) that are easily tracked
* How to find these features?
— windows where Z V!(VJ)Thas two large eigenvalues

« Called the Harris Corner Detector

Feature Detection

o
e o
oty o
o o
Voe a
o ol o
oo, 10 o o
5 o cfP aap
o o
o
o o =
o Q
oo o
A o ,900
o o LAY - a”d
o a a o
Q o o o
. o o s %o 0 o
ol o T
¥ a0 - 09 o
otall 4 o o
08 o =~
o 9 0g 5@ o8
| o © oo o

Tracking features

Handling large motions

Feature tracking
» Compute optical flow for that feature for each consecutive H, |

When will this go wrong?
» Occlusions—feature may disappear
— need mechanism for deleting, adding new features
« Changes in shape, orientation
— allow the feature to deform
« Changes in color
+ Large motions
— will pyramid techniques work for feature tracking?

L-K requires small motion
« If the motion is much more than a pixel, use discrete search instead

- - (]

H(z,y) I(z,y)

« Given feature window W in H, find best matching window in |
« Minimize sum squared difference (SSD) of pixels in window

T (4) > Iz 4wy +v)— H(a,)2
(zy)eW

« Solve by doing a search over a specified range of (u,v) values
— this (u,v) range defines the search window

Tracking Over Many Frames

Incorporating Dynamics

Feature tracking with m frames
1. Select features in first frame
2. Given feature in frame i, compute position in i+1
3. Select more features if needed
4. i=i+1
5. Ifi<m, gotostep 2

Issues
« Discrete search vs. Lucas Kanade?
— depends on expected magnitude of motion
— discrete search is more flexible

* Compare feature in frame i to i+1 or frame 1 to i+1?
— affects tendency to drift..

* How big should search window be?
— too small: lost features. Too large: slow

Idea

« Can get better performance if we know something about the
way points move
« Most approaches assume constant velocity

Xit1 = X
Xi41 = 2%, — X
or constant acceleration
Xi41 = X;
Xi41 = 3%, —3%_1 + X2

« Use above to predict position in next frame, initialize search

Feature tracking demo Image alignment

Oxford video
http://www.toulouse.ca/?/CamTracker/?/CamTracker/FeatureTracking.html

MPEG—application of feature tracking
* http://www.pixeltools.com/pixweb2.html

Goal: estimate single (u,v) translation for entire image
« Easier subcase: solvable by pyramid-based Lukas-Kanade

