How can we derive 3D information from one or more 2D images? There have been 2 approaches: 1. intrinsic images: a 2D representation that stores some 3D properties of the scene 2. 3D shape from X : methods of inferring 3D depth information from various sources
1

> What objects are shown in this image?
> How can you estimate distance from the camera?
> What feature changes with distance?

What can you determine about

1. the sizes of objects
2. the distances of objects from the camera?

Intrinsic Images: 2.5 D

The idea of intrinsic images is to label features of a
2D image with information that tells us something
about the 3D structure of the scene.

Simple Blocks World Constraints for Objects with Trihedral Junctions

Labeling Simple Line Drawings

> - Huffman and Clowes showed that blocks world drawings could be labeled (with,,$+->$) based on real world constraints.
> - Labeling a simple blocks world image is a consistent labeling problem!
> - Waltz extended the work to cracks and shadows and developed one of the first discrete relaxation algorithms, known as Waltz filtering.

2 Interpretations

floating
glued to the wall

8

Line Drawing Labeling

Problems with this Approach

Given a line drawing extracted from an image, find the correct labeling(s).

- Research on how to do these labelings was confined to perfect blocks world images

- There was no way to extend it to real images with missing segments, broken segments, nonconnected junctions, etc.
- It led some groups down the wrong path for a while.

11

Automatic Labeling

Finding a legal labeling can be done by:

1. tree search with backtracking when a node is inconsistent
2. Waltz filtering or discrete relaxation

Initialize the label set for each line segment to $\{+,-,>,<\}$
At each iteration, remove inconsistent labels as follows

If L is a label for edge Pi and there is another edge Pj connected to Pi that has no label consistent with L. then remove L from the label set of Pi.

10

3D Shape from X

- shading
- silhouette
- texture
$\left.\begin{array}{l}\text { - stereo } \\ \text { - light striping } \\ \text { motion }\end{array}\right\} \quad$ used in practice

12

Perspective Imaging Model: 1D

This is the axis of the real image plane.
O is the center of projection.
This is the axis of the front image plane, which we use.

$$
\frac{\mathrm{xi}}{\mathrm{f}}=\frac{\mathrm{xc}}{\mathrm{zc}}
$$

3D from Stereo

- 3D point

Depth Perception from Stereo Simple Model: Parallel Optic Axes

16
For stereo cameras with parallel optical axes, focal length f , baseline b, corresponding image points (xl,yl) and (xr,yr) with disparity d:

$$
\begin{aligned}
& \mathrm{z}=\mathrm{f}^{*} \mathrm{~b} /(\mathrm{xl}-\mathrm{xr})=\mathrm{f} * \mathrm{~b} / \mathrm{d} \\
& x=x l^{*} z / f \text { or } b+x r^{*} z / f \\
& y=y l * z / f \quad \text { or } \quad y r * z / f
\end{aligned}
$$

This method of determining depth from disparity is called triangulation.

2 Main Matching Methods

1. Cross correlation using small windows.

Finding Correspondences

- If the correspondence is correct,
triangulation works VERY well.
- But correspondence finding is not perfectly solved. for the general stereo problem.
- For some very specific applications, it can be solved for those specific kind of images, e.g. windshield of
a car.

18

Epipolar Geometry Constraint: 1. Normal Pair of Images

The epipolar plane cuts through the image plane(s) forming 2 epipolar lines.

The match for P1 (or P2) in the other image, must lie on the same epipolar line.

Epipolar Geometry: General Case

Structured Light

3D data can also be derived using

- a single camera
- a light source that can produce stripe(s) on the 3D object

23

Our (former) System
4-camera light-striping stereo

