. Pattern Recognition

Pattern recognition is:

1. The name of the journal of the Pattern Recognition
Society.

2. A research areain which patternsin data are
found, recognized, discovered, ...whatever.

3. A catchall phrase that includes

* classification
* clustering
* datamining

In this course

1. How should objectsto be classified be
represented?

2. What algorithms can be used for recognition
(or matching)?

3. How should learning (training) be done?

. Two Schools of Thought

1. Statistical Pattern Recognition

The datais reduced to vectors of humbers
and statistical techniques are used for
the tasks to be performed.

2. Structural Pattern Recognition

The datais converted to a discrete structure
(such as agrammar or agraph) and the
techniques are related to computer science
subjects (such as parsing and graph matching).

Classification in Statistical PR

« A classisaset of objects having some important
propertiesin common

« A feature extractor is aprogram that inputs the

data (image) and extracts features that can be
used in classification.

* A classifier isaprogram that inputs the feature
vector and assignsit to one of a set of designated
classes or to the “regject” class.

With what kinds of classes do you work?
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Classification using nearest class Scaling coordinates by std dev

mean
* Computethe
E I% dist We can compute & modified distance
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Sz, between feature vector by scaling by the spread, or standard deviation,
it < X and the mean of o of class ¢ along each dimension 1.
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Nearest mean might yield poor

: Nearest Neighbor Classification
results with complex structure
" Class 2 hastwo
1l o modes; whereis
o oy its mean? * Keep all the training samples in some efficient
\o ke -0 look-up structure.
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Receiver Operating Curve ROC

knownobjects -

Plots correct ROC

detection rate 10 o
versus false i A

alarm rate o .-“'f

Generally, false I."

alarms go up ol

with attempts to ¥ ik B
detect hlgher acomal ingoes objecr | declsion PO EypT
percentages of e

13

Bayesian decision-making
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Confusion matrix shows
empirical performance
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Classifiers often used in CV

¢ Decision Tree Classifiers
« Artificial Neural Net Classifiers

 Bayesian Classifiers and Bayesian Networks
(Graphical Models)

« Support Vector Machines
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Decision Trees
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. Entropy-Based Automatic

Decision Tree Construction

Training Set S Node 1
x1=(f11,f12,...f1m) What feature
x2=(f21,f22, f2m) should be used?

/]\ What values?

xn=(fn1,f22, f2m)

Quinlan suggested information gain in his ID3 system
and later the gain ratio, both based on entropy.
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' Decision Tree Characteristics

1. Training
How do you construct one from training data?|
Entropy-based Methods

2. Strengths
Easy to Understand

3. Weaknesses

Overtraining
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- Entropy

Given a set of training vectors S, if there are ¢ classes,

C
Entropy(S) = a -pi Iogz(pi)
i=1

Where pi is the proportion of category i examplesin S.

If all examples belong to the same category, the entropy
isO.

If the examples are equally mixed (1/c examples of each
class), the entropy isamaximum at 1.0.

eg.forc=2,-5 Iogz.5 -5 Iog?.5 =-5-1)-5-1)=1
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Information Gain

The information gain of an attribute A is the expected
reduction in entropy caused by partitioning on this attribute.

Gain(S,A) = Entropy(S) - a ) Entropy(Sv)
vi Values(A)

where Sv isthe subset of Sfor which attribute A has
vauev.

Choose the attribute A that gives the maximum
information gain.
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Information Gain (cont)
set s [ Aibute Al

vl v2 vk
SetS¢ I:' St={sl S|value(A)=v1}

repeat
recursively

Information gain has the disadvantage that it prefers
attributes with large number of values that split the
datainto small, pure subsets.
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Gain Ratio

Gain ratio is an alternative metric from Quinlan’s 1986
paper and used in the popular C4.5 package (free!).

GaNRAIO(SA) = ---rmremrmroecma
Splitinfo(S,A)

. . IS ISi|
splitinfo(SA)= & --—log, [ ...... ]
8

where Si isthe subset of Sin which attribute A hasitsith value.

Splitinfo measures the amount of information provided
by an attribute that is not specific to the category.
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| nformation Content

Note:
A related method of decision tree construction using

ameasure called Information Content is given in the
text, with full numeric example of its use.
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Artificial Neural Nets

Artificial Neural Nets (ANNSs) are networks of
artificial neuron nodes, each of which computes
asimple function.

An ANN has an input layer, an output layer, and
“hidden” layers of nodes.
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Neural Net Learning

That's beyond the scope of this text; only
simple feed-forward learning is covered.

The most common method is called back propagation.

We've been using a free package called NevProp.

What do you use?
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Node Functions

al W) neuron i

y@ — oupu
]

loutput = g (& & * w(j,i))|

Function g is commonly a step function, sign function,
or sigmoid function (see text).
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Support Vector Machines (SVM)

Support vector machines are learning algorithms
that try to find a hyperplane that separates

the differently classified data the most.

They are based on two key ideas:

e Maximum margin hyperplanes

e AKkernel ‘trick’.
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Maximal Margin

1 ,Margin
AL
o L

o 1 Hyperplane

Find the hyperplane with maximal margin for all
the points. This originates an optimization problem
Which has a unigue solution (convex problem).
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The kerndl trick

The SVM agorithm implicitly maps the original

data to afeature space of possibly infinite dimension

in which data (which is not separable in the

original space) becomes separable in the feature space.

Original space Rk Feture space Rln
0 0 1 0 1
1o |:> 0 1
0 o Kene | © 0 © 1
1 1 trick
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Non-separable data

What can be done if data cannot be separated with a
hyperplane?
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Our Current Application

« Sal Ruiz isusing support vector machinesin his
work on 3D object recognition.

« Heistraining classifiers on data representing deformations
of a3D model of aclass of objects.

 The classifiers are starting to learn what kinds of
surface patches are related to key parts of the model
(ie. A snowman’sface)
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Snowman with Patches
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