

OUTLINE

Reconstruction

- Kari Pulli's Reconstruction from Range Data
- Zhenrong Qian's Reconstruction from Visible Human Data

• Recognition

- Sal Ruiz's 3D Object Recognition and Localization from Range Data
- Pam Neal's Approach to Class Recognition

• Interaction

- Habib Abi Rached's Work on Gesture Recognition
- Mark Billinghurst's Augmented Reality Work

Surface Modeling and Display from Range and Color Data

Karî	Pulli	UW		
Michael	Cohen	MSR		
Tom	Duchamp	UW		
Hugues	Hoppe	MSR		
John	McDonald	UW		
Linda	Shapiro	UW		
Werner	Stuetzle	UW		
0'w' =	University of Washington Senttle WA USA			
MSR =	Nicrosoft Rese-	arch ISA		

Introduction

Goal

 develop robust algorithms for constructing 3D models from range & color data 3

 use those models to produce realistic renderings of the scanned objects

Surface Reconstruction

Step 1: Data acquisition

Obtain range data that covers the object. Filter, remove background.

Step 2: Registration

Register the range maps into a common coordinate system.

Step 3: Integration

Integrate the registered range data into a single surface representation.

Step 4: Optimization

Fit the surface more accurately to the data, simplify the representation.

Zhenrong Qian and Linda Shapiro Computer Science & Engineering Department University of Washington

17

18

Introduction

• Goal

 to reconstruct the blood vessels of the lungs from Visible Human Data

- Computer vision
 - semi-automation
 - low-level image processing
 - model construction

Visible Human Data: Slice through the Lung

Problems Encountered

• Data source

- black spots that are not blood vessels
- variations of lighting
- Characteristics of blood vessels
 - similar color surrounds
 - lack of knowledge
 - close location
 - shape variety
 - continuous change not expected

20

dense data

Finding the contours of a vessel being tracked (2)

• The results after selecting regions of similar color to the tracked region

22

Segmentation result

Selected regions

Finding the contours of a vessel being tracked (3)

• The results after selecting the region that overlaps most with the previous contour

Selected regions

Region that overlaps most

23

Find the contours of a vessel being tracked (4)

• The results after morphology to close holes and remove noise

Selected region

After noise removal

Find the contours of a vessel being tracked (5)

• The contour is determined through a fastmarching level-set approach

Previous contour

Current contour

25

axis is not vertical • **Track** the axis through the center points of found

The use of resampling when the

- contours
- Fit a spline curve
- **Resample** the data perpendicular to the spline curve
- Use the resampled contours for model creation

How branching is handled

• One contour divides into two

• Two contours merge into one

Detect the axis

27

Center points of found contours

Spline-fitted axis

Overall Procedure for finding Vessel Trees

- The user **selects** a starting point
- The program automatically **tracks** the selected vessel and any branches it finds
- The program creates a **generalized cylinder** representation of the vessel tree

30

• The user may select more starting points

<section-header><section-header><text><text>

Typical Cross Section

A Signature-Based Method for Efficient 3-D Recognition

Salvador Ruiz Correa Linda G. Shapiro Department of Electrical Engineering Department of Computer Science & Eng. University of Washington

35

Goal

To develop a compact representation of shape for 3-D object recognition in complex 3-D scenes.

Previous Work Nonparametric Representations

- Splashes (Stein and Medioni, 1992)
- SAI (Hebert et. al., 1995).
- Point Signatures (Chua and Jarvis, 1997).
- Shape Spectrum (Dorai and Jain, 1997).

- Harmonic Images (Zang, 1999).
- Spin Images (Johnson, 1999).

SS vs SI 3			LO	LC	
	3.36	4.24	4.74	6.68	76.11
SS+RP vs SI+RP 13	3.55	25.82	4.12		-
SS+RP vs SI+PCA 26	6.18	27.73	21.13	13.81	16.12
SI+RP vs SI+PCA 12	2.67		17.01	29.30	15.71

Stereo-based Hand Gesture Tracking and Recognition in Immersive Stereoscopic Displays

Habib Abi-Rached HITLab (Human Interface Technology Lab) Electrical Engineering Department University of Washington Tuesday December 18th 2001

Objective

- Mission: Facilitate communication:
 - Bandwidth.
 - Intuitiveness.
 - Efficiency.

- Means:
 - Visual (Displays, HMD ...).
 - Gestural

Limitation of Current Technology.

- Limited efficiency. – Mouse Keyboard...
- No 3D. (Monitors).
- Small FOV. (Monitors).
- Few Degrees of Freedom. (Joysticks, Mice
- Limited intuitiveness.
- Physical connection.
 - (Gloves, Mice, HMD, phantom, polhemus).
- Precision depends on distance.

• Inexpensive immersive PC-based

- Inexpensive immersive PC-based gesture tracking / recognition System

52

Gesture-based Interaction With 3D Displays.

• Intuitive interaction, easy to learn.

Proposal: Stereo-based Hand Gesture Tracking and Recognition.

- Camera Calibration.
- Stereo matching & reconstruction of the hand.
- Hand modeling.
- Initial pose of the hand model.
- Tracking of the hand.
- Building a gesture library.
- Gesture recognition.
- Selecting a task to measure the goodness of the system.

Uniqueness of Our Approach:

- Stereo + detailed hand model will give:
 - Precision.
 - Real time performance.
 - 27 degrees of freedom.
- Wire-free system.
- Accuracy independent of distance.

Shared Space: Explorations in Collaborative Augmented Reality

Mark Billinghurst

grof@hitl.washington.edu

HIT Lab, University of Washington

60

Collaborative Augmented Reality

- Attributes:
 - VirtualityAugmentation
 - Cooperation
 - Independence
 - Individuality

• Natural Communication

61

Collaborative AR Interfaces

- Face to Face Collaboration WebSpace, Shared Space, Table Top Demo, Interface Comparison, AR Interface Comparison
- Remote Collaboration SharedView, RTAS, Wearable Info Space, WearCon Conferencing, BlockParty
- Transitional Interfaces
 MagicBook
- Hybrid Interfaces AR PRISM, GI2VIS

- Arrange 9 building to satisfy 10 rules in 7 minutes
- Subjects
 - Within subjects study (counter-balanced)
 - Pilot 8 pairs grade school children
 - Full 12+2 pairs of college students

Face to Face Condition

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

MagicBook Metaphor

