3D Models and Matching
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* representations for 3D object models
* particular matching techniques

« alignment-based systems

* appearance-based systems

GC model of ascrewdriver
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Mesh Models
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Mesh models were originally for computer graphics. (i e
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With the current availability of range data, they are

now used for 3D object recognition.

What types of features
can we extract from meshes
for matching ?

In addition to matching,
they can be used for
verification.

3D Models

|
« Many different representations have béen used to model
3D objects.

* Some arevery coarse, just picking up the important features.
« Others are very fine, describing the entire surface of the object.

 Usually, the recognition procedure depends very much on
the type of model.

Surface-Edge-Vertex Models
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SEV models are at the opposite extrem%fro‘m r‘n‘ksh

h models.

'l
They specify the (usually linear) features that would be
extracted from 2D or 3D data

They are suitable for objects with sharp edges and corners
that are easily detectable and characterize the object.

surface edge

vertex

surface | surface




Generalized-Cylinders
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A generalized cylinder is avolumetric primitive defined by:

* agpace curve axis
* across section function

Zp

This cylinder has

0000

- curved axis

standard rectangular ) ]
- varying cross section

cylinder Cross sections|
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Finding GCsin Intensi ty‘Data
I

Generalized cylinder models have been used for several \U [
different classes of objects: } T

- airplanes (Brooks)

- animals (Marr and Nishihara)

- humans (Medioni)

- human anatomy (Zhenrong Qian)

The 2D projections of standard GCs are

- ribbons
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- dlipses i N ; ;
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Generalized-Cylinder Models
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Generalized cylinder modelsinclude: U I
1. aset of generalized cylinders /\ ]
2. the spatial relationships among them 2
3. theglobal properties of the object \1 }
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How can we describe the attributes of
the cylinders and of their connections?

1 Octrees
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- Octrees are 8-ary tree structures that compress a voxeliis
representation of a 3D object. J (AR

- Kari Puli used them to represent the 3D objects during
the space carving process.

- They are sometimes used for medical object representation.




Sjpenqqaﬂmrics
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* Superquadrics are parameterized equations that
describe solid shapes algebraically.

» They have been used for graphics and for representing
some organs of the human body, ie. the heart.

3D Deformable Models
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In 3D, the snake concept becomes a balloon that Q(#dlﬁ%” i
to fill apoint cloud of 3D data. I T
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2D Deformable Models

\
A 2D deformable model or snakeis a function that %
isfit to someredl data, dongitscontours. '

Thefitting mimizes:

- interna energy of the
contour (smoothness)

- image energy (fit to data)

- external energy (user-
defined constraints)
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Matching Geometric Models
via Ali qnment
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Alignment is the most common paradigm for m#Chi}] J

3D modelsto either 2D or 3D data. The steps are:

1. hypothesize a correspondence between a set of model
points and a set of data points

2. From the correspondence compute a transfor mation
from model to data

3. Apply thetransformation to the model features to
produce transformed features

4. Compar ethe transformed model features to the image
featuresto verify or disprove the hypothesis
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3D-3D Alignment of Mesh
Models to Mesh Data
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* Older Work: match 3D features such és} 3D‘ ed‘g‘es and junctions
or surface patches

« More Recent Work: match surface signatures

- curvature at apoint

- curvature histogram in the neighborhood of a point
- Medioni’s splashes

- Johnson and Hebert' s spin images
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Soin Image Construction

L

« A spinimageis constructed LT
- about a specified oriented point o of the object surface
- with respect to a set of contributing points C, which is
controlled by maximum distance and angle from o.

* Itisstored as an array of accumulators S(a,b) computed via:
* For each point cin C(0)

1. computea and b for c.
2. increment S (a,b)
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The Soin Image Sgnature
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Pisthe selected vertex. U (RN
X

X isacontributing point n
of the mesh. | bT

p l)a /angent plane at P

a isthe perpendicular distance from X to P’'s surface normal.

b isthe signed perpendicular distance from X to P stangent plane.
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Spin Image Matching
ala Sal Ruiz . .

H\Tw \
SCENE . Finding Matches
Sigggg}}es on the Sphere

fos}

Search Space Detail
(Spherical Cap) 16




Soin Images Object Recogni tion
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Offline: Compute spin images of each vertex of the Ogj o iy L
|

1. Compute spin images at selected points of a scene.

2. Compare scene spin images with model scene images by
correlation or related method.

3. Group strong matches asin pose clustering and eliminate
outliers.

4. Usethe winning pose transformation to align the model to
the image points and verify or disprove.
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View Classes and Viewing Sphere
: w%
« The space of view points can be (R

partitioned into afinite set of A

characteristic views.

* Each view class represents a set of
view points that have something
in common, such as

1. same surfacesare visible
2. same line segments are visible
3. relational distance between pairs of them is small
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2D-3D| Aliqnment
‘ I
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« single 2D imagesof the objects —

* 3D object models
- full 3D models, such as GC or SEV

- view class models representing characteristic
views of the objects
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3 View Classes of a Cube
~H
WNLL,
1 surface 2 surfaces 3 surfaces
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TRIBORS view class matching
of polyhedral objects
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 Each object had 4-5 view classes (hand selected)

« The representation of aview class for matching included:
- triplets of line segments visiblein that class
- the probability of detectability of each triplet determined
by graphics simulation

Object Representation in RIO

el
* 3D objects are represented by a3D mesh and set of| iD view classes.
|

 Each view class is represented by an attributed graph whose
nodes are features and whose attributed edges are relationships.

« For purposes of indexing, attributed graphs are stored as
sets of 2-graphs, graphs with 2 nodes and 2 relationships.

RIO: Relational Indexing for
Object Recogni tion

|
« RIO worked with more complex parts that, could have
- planar surfaces l
- ¢ylindrical surfaces

- threads

F

22

- sharean arc coaxial arc
IE cluster
RIO Features
| - 11 ‘

elipses coaxias coaxialsmulti
L 4 ALY
parallel lines junctions triples

close and far L \ Y Z U
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RIO Relationships
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e shareone arc
* share two lines

E “ “
|
« close at extremal points

« bounding box encloses / enclosed by

o/
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wes Graph and 2-Graph
44 ) Representations
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1 coaxias |
multi N encloses

encloses -
2 ellipse e e . c

3 parallel [ coaxia

Hexnut Object

‘ mw ‘
T FTEE TR T
[
MODEL-VIEW
ol . % RELATIONS: What Other feéiures
. -, -~ a: enclosas and relationships
| 3 Y b: coaxal can you find?
Il' /:Ll, : FEATURES:
L s 1: coaxials-multi
) e 3 2. eflipse
e 3. parallel lines
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lines
27
Relational Indexing for Recognition
o
Preprocessing (off-line) Phase T ‘1 (R
I

for each model view Mi in the database
* encode each 2-graph of Mi to produce an index

» store Mi and associated information in the indexed
bin of a hash table H

28




Matching (on-line) phase
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. Construct arelational (2-graph) d@cript‘i on D for the scene

. For each 2-graph G of D

« encode it, producing an index to access the hash table H

» cast avote for each Mi in the associated bin

. Select the Mis with high votes as possible hypotheses

. Veify or disprove viaalignment, using the 3D meshes

79

incorrect RI O Ver I fl \Cat|0nS

hypothesis (0

I \ | I ‘

} 1. The matched features
of the hypothesized
object are used to
determine its pose.

2. The 3D mesh of the
objectisused to
project all its features
onto theimage.

3. A verification procedure
checks how well the object
features line up with edges
on theimage.

The Voting Process
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Functional Models
(Stark and Bowyer)

|

« Classes of objects are defined througkﬂthéi r functions.

» Knowledge primitives are parameterized procedures
that check for basic physical concepts such as

- dimensions
- orientation
- proximity

- stability

- clearance

- enclosure

32




Example: Chair
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Recognition by Appearance
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» Appearance-based recognition isa compéti nb péfadigm to
features and alignment.

* No features are extracted!

» Images are represented by basis functions (el genvectors)
and their coefficients.

« Matching is performed on this compressed image
representation.
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Functional Recognition Procedure
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* Segment the range data into surfaces U (AR

* Use a bottom-up analysisto determine al functional properties

» From this, construct indexes that are used to rank order the
possible objects and prune away the impossible ones

* Use atop-down approach to fully test for the most highly
ranked categories.

What are the strengths and weaknesses of this approach?
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Linear subspaces

G Consider the s%um squared distance of a
e o' e point x to all of the oranqe po“nw:
T is the mean ° i I
C .
of the orange ® . va e ° ° SSD(v) = Z [[(x=%)"-v]
points . ® A n'ﬂ .' orange point X
P e
e o T ° °, What unit veetor v minimizes SSD?
° : . vo = miny {SSD(v)}
° .
. ® ° : . What unit vector v maximizes SSD?
o o vi = mazxy {SSD(v)}
R

SSD(v) = Ylx-0T v
= ZVT(X —%)(x-x)Tv
= VI Y x-0x-0T|v
= vTAv where A = S x-x)(x— )T

Solution: v, is eigenvector of A with largest eigenvalue
Vv, is eigenvector of A with smallest eigenvalue 36




Principle component analysis
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* Suppose each data point is N-dimensiona | | || 1
— Same procedure applies: |
sSD(v) = Llx-x)T vl

= vIAv where A = SE-x)(x— i)T
X

— Theeigenvectorsof A defineanew coordinate system

« eigenvector with largest eigenvalue captures the most variation
among training vectorsx

 eigenvector with smallest eigenvalue has least variation

— We can compress the data by only using the top few eigenvectors
« corresponds to choosing a“linear subspace”
— represent pointson aline, plane, or “hyperplane”
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Dimensionality reduction
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—~We can find the best subspace using PCA

—Supposeit isK dimensional
—Thisislikefitting a“hyper-plane’ to the set
of faces
sspanned by Vectorsvy, v, ..., Vi
sany facex » av i+ av,+, ..., + &Vg

¥

The set of facesisa“subspace’ of the set of images.
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The space of faces

I
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« Animageisapoint in ahigh dimensional space
— AnN x M imageisapoint in R\

— We can define vectorsin this space
38

Turk and Pentland’ s Eigenfaces
 Training

m%_

eLetF1, F2,..., FM be aset of training f@impb@ ‘
Let Fbetheirmeanand Fi=Fi —F _|

» Use principal componentsto compute the eigenvectors
and eigenvalues of the covariance matrix of theFi s

« Choose the vector u of most significant M eigenvectors
to use as the basis.

« Each face is represented as alinear combination of eigenfaces

u=(ul, u2, u3, u4, us); F27 =al*ul +a2*u2 + ... + ab*us

40




Objects

Extension to 3'\] 10
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« Murase and Nayar (1994, 1995) extended thisideato 3D
- objects.
unknown convert to its
face |Image elgenfac;a i W= (WL, W2, ..., W) * Thetraining set had multiple views of each object, ona
representation dark background.
- — * The views included multiple (discrete) rotations of the object on
Find the face class k that minimizes aturntable and also multiple (discrete) illuminations
ek = ||W- WK || « The system could be used first to identify the object and then to
determine its (approximate) pose and illumination.
41 43

training '
images .
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Sgnificance of this work
1 \ i
'E ~re

* The extension to 3D objects was an impdr,én{

3eigen « Instead of using brute force search, the authors observed that
images
All the views of asingle object, when transformed into the

eigenvector space became points on a manifold in that space.

« Using this, they developed fast algorithms to find the closest
object manifold to an unknown input image.

linear g
approxi-
mations

* Recognition with pose finding took less than a second.
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Sample Objects
Columbia Object Recognition Database
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Appearance-Based Recognition

» Training images must be representative of thei néxa«%‘ T
of objectsto be recognized. | I

TANLRALL \ (N
1

* The object must be well-framed.

* Positions and sizes must be controlled.

* Dimensionality reduction is needed.

* Itisstill not powerful enough to handle general scenes
without prior segmentation into relevant objects.-- my comment

* Hybrid systems (features plus appearance) seem worth pursuing.
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