CSE574 - Administriva

No class on Fri 01/25 (Ski Day)

Last Wednesday

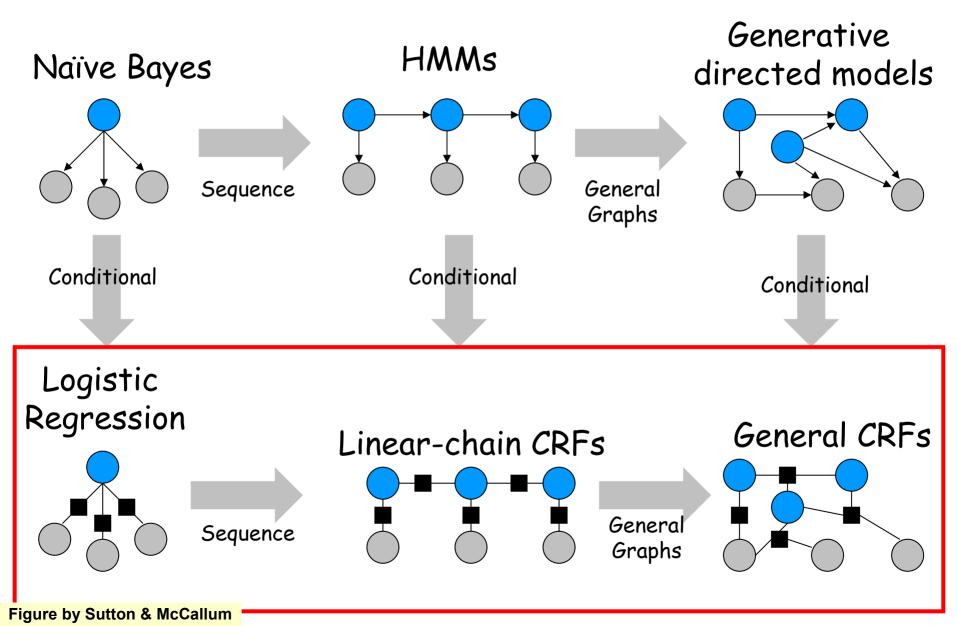
• HMMs

- Most likely individual state at time t: (forward)
- Most likely sequence of states (Viterbi)
- Learning using EM
- Generative vs. Discriminative Learning
 - Model p(y,x) vs. p(y|x)
 - p(y|x): don't bother about p(x) if we only want to do classification

Today

- Markov Networks
 - Most likely individual state at time t: (forward)
 - Most likely sequence of states (Viterbi)
 - Learning using EM
- CRFs
 - Model p(y,x) vs. p(y|x)
 - p(y|x): don't bother about p(x) if we only want to do classification

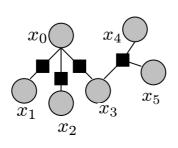
Finite State Models



Graphical Models



• Factor Graphs



 $p(\mathbf{x}) = \frac{1}{Z} \prod_{A} \Psi_{A}(\mathbf{x}_{A})$ $A \subset \{x_{1}, \dots, x_{K}\}$ Ψ_{A} factor function

Markov Networks

С

В

Undirected graphical models

Α

 Potential functions defined over cliques $P(X) = \frac{1}{Z} \prod \Phi_c(X) \qquad \qquad Z = \sum_{X} \prod \Phi_c(X)$ $\Phi(A,B) = \begin{cases} 3.7 & \text{if A and B} \\ 2.1 & \text{if A and } \overline{B} \\ 0.7 & \text{otherwise} \end{cases}$ $\Phi(B,C,D) = \begin{cases} 2.3 & \text{if B and } \overline{C} \text{ and } D \\ 5.1 & \text{otherwise} \end{cases}$

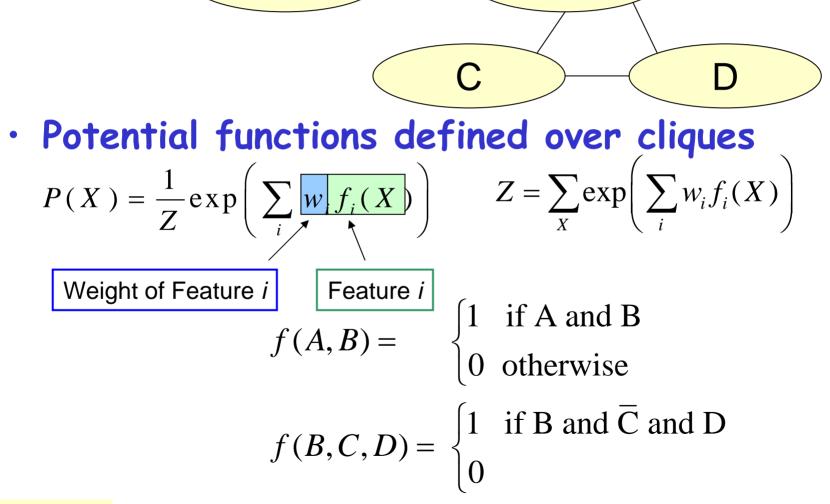
Slide by Domingos

Markov Networks

В

Undirected graphical models

Α



Hammersley-Clifford Theorem

If Distribution is strictly positive (P(x) > 0) And Graph encodes conditional independences Then Distribution is product of potentials over cliques of graph

Inverse is also true.

Markov Nets vs. Bayes Nets

Property	Markov Nets	Bayes Nets
Form	Prod. potentials	Prod. potentials
Potentials	Arbitrary	Cond. probabilities
Cycles	Allowed	Forbidden
Partition func.	Z = ?	Z = 1
Indep. check	Graph separation	D-separation
Indep. props.	Some	Some
Inference	MCMC, BP, etc.	Convert to Markov

Inference in Markov Networks

Goal: compute marginals & conditionals of

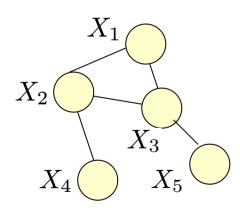
• Exa • Con E.g.: What is $P(x_i)$? What is $P(x_i|x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_N)$?

$$P(x \mid MB(x)) = \frac{\exp\left(\sum_{i} w_{i} f_{i}(x)\right)}{\exp\left(\sum_{i} w_{i} f_{i}(x=0)\right) + \exp\left(\sum_{i} w_{i} f_{i}(x=1)\right)}$$

• Gibbs sampling exploits this

Markov Chain Monte Carlo

- Idea:
 - create chain of samples x⁽¹⁾, x⁽²⁾, ...
 where x(i+1) depends on x(i)
 - set of samples x⁽¹⁾, x⁽²⁾, ... used to approximate
 p(x)



$$\mathbf{x}^{(1)} = (X_1 = x_1^{(1)}, X_2 = x_2^{(1)}, \dots, X_5 = x_5^{(1)})$$
$$\mathbf{x}^{(2)} = (X_1 = x_1^{(2)}, X_2 = x_2^{(2)}, \dots, X_5 = x_5^{(2)})$$
$$\mathbf{x}^{(3)} = (X_1 = x_1^{(3)}, X_2 = x_2^{(3)}, \dots, X_5 = x_5^{(3)})$$

Markov Chain Monte Carlo

Gibbs Sampler

- 1. Start with an initial assignment to nodes
- 2. One node at a time, sample node given others
- 3. Repeat
- 4. Use samples to compute P(X)
- Convergence: Burn-in + Mixing time
- Many modes \Rightarrow Multiple chains

Iterations required to Iterations required to move away be close to stationary dist. from particular initial condition

Other Inference Methods

- Belief propagation (sum-product)
- Mean field / Variational approximations

Learning

- Learning Weights
 - Maximize likelihood
 - Convex optimization: gradient ascent, quasi-Newton methods, etc.
 - Requires inference at each step (slow!)

Learning Structure

- Feature Search
- Evaluation using Likelihood, ...

Back to CRFs

 CRFs are conditionally trained Markov Networks

Linear-Chain Conditional Random Fields • From HMMs to CRFs

$$p(\mathbf{y}, \mathbf{x}) = \prod_{t=1}^{T} p(y_t | y_{t-1}) p(x_t | y_t)$$

can also be written as

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} exp\left(\sum_{t} \sum_{i,j \in S} \lambda_{ij} \mathbf{1}_{\{y_t=i\}} \mathbf{1}_{\{y_t=i\}} + \sum_{t} \sum_{i \in S} \sum_{o \in O} \mu_{oi} \mathbf{1}_{\{y_t=i\}} \mathbf{1}_{\{x_t=o\}}\right)$$

(set
$$\lambda_{ij} := \log p(y' = i | y = j)$$
 , ...)

We let new parameters vary freely, so we need normalization constant Z.

$$\begin{aligned} & \text{Linear-Chain} \\ & \text{Conditional Random Fields} \end{aligned}$$

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z}exp \left(\sum_{t} \sum_{i,j \in S} \lambda_{ij} \mathbf{1}_{\{y_t=i\}} \mathbf{1}_{\{y_{t-1}=j\}} + \sum_{t} \sum_{i \in S} \sum_{o \in O} \mu \\ \text{Initial for the second formula of the$$

Linear-Chain Conditional Random Fields

 Conditional p(y|x) that follows from joint p(y,x) of HMM is a linear CRF with certain feature functions!

Linear-Chain Conditional Random Fields

• Definition:

A <u>linear-chain CRF</u> is a distribution that

takes the form

parameters

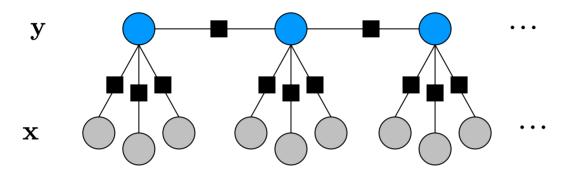
feature functions

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} exp\left(\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, \mathbf{x}_t)\right)$$

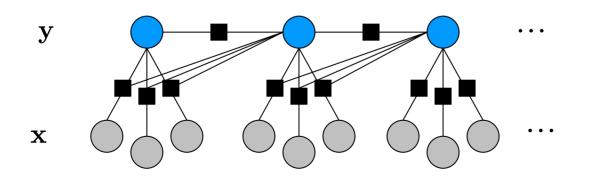
where Z(x) is a normalization function

$$Z(x) = \sum_{\mathbf{y}} exp\left(\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, \mathbf{x}_t)\right)$$

Linear-Chain Conditional Random Fields • HMM-like linear-chain CRF



• Linear-chain CRF, in which transition score depends on the current observation



Questions

• #1 - Inference

Given observations $x_1 x_N$ and CRF θ , what is $P(y_t, y_{t-1}|x)$ and what is Z(x)? (needed for learning)

• #2 - Inference

Given observations $x_1 x_N$ and CRF θ , what is the most likely (Viterbi) labeling $y^* = arg max_y p(y|x)$?

• #3 - Learning

Given iid training data $D=\{x^{(i)}, y^{(i)}\}$, i=1...N, how do we estimate the parameters $\theta=\{\lambda_k\}$ of a linear-chain CRF?

Solutions to #1 and #2

- Forward/Backward and Viterbi algorithms similar to versions for HMMs
 HMM Definition_T
- HMM as factor graph

HMM Definition_T
$$p(\mathbf{y}, \mathbf{x}) = \prod_{t=1}^{T} p(y_t | y_{t-1}) p(x_t | y_t)$$

$$p(\mathbf{y}, \mathbf{x}) = \prod_{t=1}^{T} \Psi_t p(y_t, y_{t-1}, x_t)$$
$$\Psi_t(j, i, x) := p(y_t = j | y_{t-1} = i) p(x_t = x | y_t = j)$$

• Then

 $\begin{aligned} \alpha_t(i) &= \sum_{i \in S} \Psi_t(j, i, x_t) \alpha_{t-1}(i) & \text{forward recursion} \\ \beta_t(i) &= \sum_{j \in S} \Psi_{t+1}(j, i, x_{t+1}) \beta_{t+1}(j) & \text{backward recursion} \\ \delta_t(j) &= \max_{i \in S} \Psi_t(j, i, x_t) \delta_{t-1}(i) & \text{Viterbi recursion} \end{aligned}$

Forward/Backward for linear-chain CRFs ...

- ... identical to HMM version except for factor functions $\Psi_t(j, i, \mathbf{x}_t)$ CRF Definition
- CRF can be written as

$$\begin{array}{|} \hline \mathbf{CRF \ Definition} \\ p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} exp\left(\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, \mathbf{x}_t)\right) \end{array}$$

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{t=1}^{T} \boldsymbol{\Psi}_t(y_t, y_{t-1}, \mathbf{x}_t)$$
$$\boldsymbol{\Psi}_t(y_t, y_{t-1}, \mathbf{x}_t) := exp\left(\sum_k \lambda_k f_k(y_t, y_{t-1}, \mathbf{x}_t)\right)$$

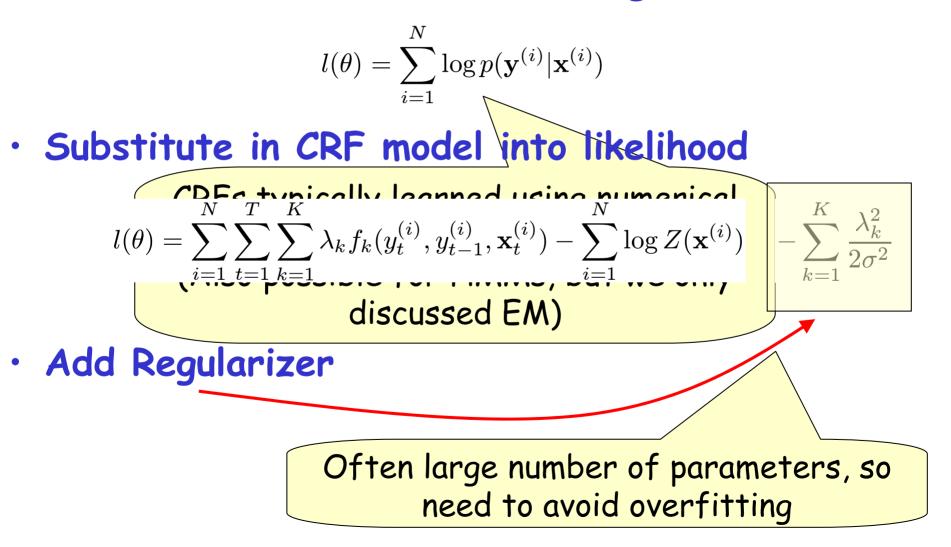
• Same: $\alpha_t(i) = \sum_{i \in S} \Psi_t(j, i, x_t) \alpha_{t-1}(i)$ forward recursion $\beta_t(i) = \sum_{j \in S} \Psi_{t+1}(j, i, x_{t+1}) \beta_{t+1}(j)$ backward recursion $\delta_t(j) = \max_{i \in S} \Psi_t(j, i, x_t) \delta_{t-1}(i)$ Viterbi recursion

Forward/Backward for linear-chain CRFs • Complexity same as for HMMs

Linear in length of sequence!

Solution to #3 - Learning

Want to maximize Conditional log likelihood



Regularization

- Commonly used I₂-norm (Euclidean)
 - Corresponds to Gaussian prior over parameters

$$-\sum_{k=1}^{K}\frac{\lambda_k^2}{2\sigma^2}$$

- Alternative is l_1 -norm
 - Corresponds to exponential prior over parameters
 - Encourages sparsity

$$-\sum_{k=1}^{K} \frac{|\lambda_k|}{\sigma}$$

 \cdot Accuracy of final model not sensitive to σ

Optimizing the Likelihood

• There exists no closed-form solution, so must use numerical optimization.

$$l(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}) - \sum_{k=1}^{K} \frac{\lambda_k^2}{2\sigma^2}$$

$$\frac{\partial l}{\partial \lambda_k} = \sum_{i=1}^N \sum_{t=1}^T f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^N \sum_{t=1}^T \sum_{y,y'} f_k(y, y', \mathbf{x}_t^{(i)}) p(y, y' | \mathbf{x}^{(i)}) - \sum_{k=1}^K \frac{\lambda_k}{\sigma^2}$$

 I(θ) is concave and with regularizer strictly concave

$$\rightarrow$$
 only one global optimum

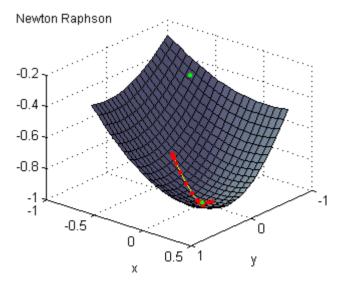


Figure by Cohen & McCallum

Optimizing the Likelihood

Steepest Ascent

very slow!

Newton's method

fewer iterations, but requires Hessian⁻¹

Quasi-Newton methods

approximate Hessian by analyzing successive gradients

- BFGS

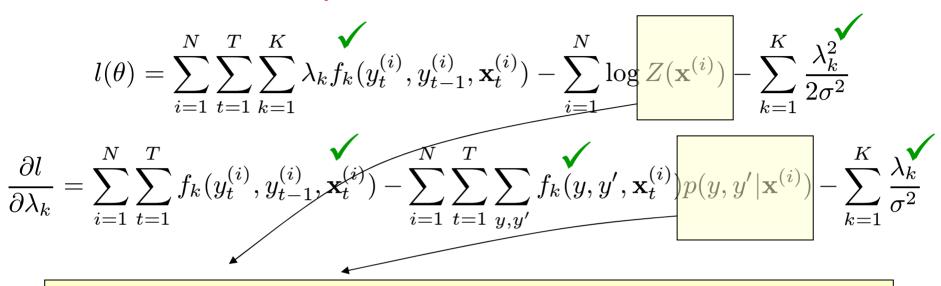
fast, but approximate Hessian requires quadratic space

- L-BFGS (limited-memory)

fast even with limited memory!

- Conjugate Gradient

Computational Cost



 For each training instance: O(K²T) (using forward-backward)

 For N training instances, G iterations: O(K²TNG)

Examples:

- Named-entity recognition
- Part-of-speech tagging

11 labels; 200,000 words 45 labels, 1 million words

< 2 hours > 1 week

Person name Extraction

	[McCallum 200
Press Release 1/18/99 - Microsoft Internet Explorer provided by WhizBang! Labs - [Working Offl 💶 🗖 >	unpublished]
File Edit View Favorites Tools Help	
🛏 Back 🔻 🔿 🗸 🙆 🚮 🔯 Search 🕋 Favorites 🛛 🖓 History 🛛 🛃 🕶 🐼 🖛 🖃	
dress 🙋 C:\Documents and Settings\mccallum\Desktop\FromLinux\train30.s5.markedup\alloysilverstein.com 🗾 🗌 Links 🤉	»
GEORGE E. BARRETT, CPA, AWARDED CERTIFICATE OF EDUCATIONAL	
ACHIEVEMENT IN EMPLOYEE BENEFIT ADMINISTRATION	
lloy, Silverstein, Shapiro, Adams, Mulford & Co., Cherry Hill, NJ, the 17th largest accounting	
rm with offices in the Philadelphia area, is pleased to announce that Associate Partner George	
. Barrett, CPA, a Cherry Hill, NJ resident and 1983 graduate of Rutgers University, has been	
warded a certificate of educational achievement in employee benefit administration from the	
ennsylvania Institute of Certified Public Accountants. The certificate was awarded in recognition	
f Mr. Barrett's completion of a program which includes a series of seminars and comprehensive	
xaminations.	
lloy, Silverstein, Shapiro, Adams, Mulford, & Co., which celebrates its 40th anniversary in	
999, provides a wide range of services including accounting, auditing, tax, management	
onsulting, financial and estate planning, business valuations, litigation support and information	
echnology.	
_	
or more information contact:	
Reynold P. Cicalese, CPA	
Alloy, Silverstein, Shapiro, Adams, Mulford & Co.	
900 Kings Highway North	
Cherry Hill, NJ 08034-1561	
609.667.4100 extension 133	

11.

Slide by Cohen & McCallum

Person name Extraction

November 6&7 - PAWS on the Green Golf	Tournament presented by M.A.B Paints - Microsoft Int 💶 🗖 🗙
<u> </u>	*
$] \Leftrightarrow Back \bullet \to \bullet \oslash \textcircled{O} \textcircled{O} \textcircled{O} \textcircled{O}$ Search	🔝 Favorites 🤇 History 🛛 🔂 🕶 👿 👻 🖃
Address 🙋 umanesocietyofbroward.com\nm-htt	p+www.humanesocietyofbroward.com+pawongreengo.html 🗾 🗌 Links ≫
four co-persons decided to continu Cunningham, Marti Huizenga - HS Weintraub. This year's tournament format brought about by popular de dominated by eagles and birdies,	The chairmen are Katie are than \$119,000 was raised for the animals) all ue in their positions. The chairmen are Katie BC Board Member, Ursula Kekich and Barbara promises to be even better with a new two-day emand. Even though it is hoped the event will be it will literally be raining cats and dogs when s of furry friends, many of whom will melt the hearts
are dedicated to making it a succe Dianne Davant, Liz Ferayorni, Anr Celia Hogan, Paige Hyatt, Joanne	airwomen of this event, the Committee Members ess and they are: Joy Abbott, Meredith Bruder, o Gremillion, Madelaine Halmos, Elaine Heinrich, o Johnsen, Patty Kearns, Karin Kirschbaum, Carol nrod, Tricia Rutsis, Caryl Sorensen, Kathie
by Cundy Insurance, AutoNation In	ent is presented by M.A.B Paints and sponsored ic, the Miami Dolphins, American Airlines, Z-Go South Florida, Merrill Lynch, Dianne Davant ind Faust, P.A.
many programs and services inclu animals each year, educating the	support the Humane Society of Broward County's iding: providing services for more than 20,000 community about respect for animals through
Done 🖉	📃 📃 My Computer

Slide by Cohen & McCallum

Features in Experiment

Capitalized Xxxxx XxXxxx Mixed Caps XXXXX All Caps Initial Cap Χ.... **Contains Digit** xxx5 All lowercase XXXX X Initial Punctuation .,:;!(), etc Period . Comma . . Apostrophe Dash Preceded by HTML tag

Character n-gram classifier says string is a person name (80% accurate) In stopword list (the, of, their, etc) In honorific list (Mr. Mrs. Dr. Sen. etc) In person suffix list (Jr, Sr, PhD, etc) In name particle list (de, la, van, der, etc) In Census lastname list: segmented by P(name) In Census firstname list: segmented by P(name) In locations lists (states, cities, countries) In company name list ("J. C. Penny") In list of company suffixes (Inc, & Associates, Foundation)

Hand-built FSM person-name extractor says yes, (prec/recall ~ 30/95)

- Conjunctions of all previous feature pairs, evaluated at the current time step.
- Conjunctions of all previous feature pairs, evaluated at current step and one step ahead.
- All previous features, evaluated two steps ahead.
- All previous features, evaluated one step behind.

Total number of features = ~500k

Training and Testing

- Trained on 65k words from 85 pages, 30 different companies' web sites.
- Training takes 4 hours on a 1 GHz Pentium.
- Training precision/recall is 96% / 96%.
- Tested on different set of web pages with similar size characteristics.
- Testing precision is 92 95%, recall is 89 - 91%.

Part-of-speech Tagging

45 tags, 1M words training data, Penn Treebank

DT NN NN , NN , VBZ RB JJ The asbestos fiber , crocidolite, is unusually resili	IN ent once
PRP VBZ DT NNS , IN RB JJ NNS TO P it enters the lungs , with even brief exposures to it	RP VBG t causing
NNS WDT VBP RP NNS JJ , NNS symptoms that show up decades later , researche	VBD . rs said .

Using spelling features*

		•				
	Error	oov error	error	$\Delta { m err}$	oov error	$\Delta { m err}$
НММ	5.69%	45.99%				
CRF	5.55%	48.05%	4.27%	-24%	23.76%	-50%

* use words, *plus* overlapping features: capitalized, begins with #, contains hyphen, ends in -ing, -ogy, -ed, -s, -ly, -ion, -tion, -ity, -ies.

[Lafferty, McCallum, Pereira 2001]

Slide by Cohen & McCallum

Table Extraction from Government Reports

Cash receipts from marketings of milk during 1995 at \$19.9 billion dollars, was slightly below 1994. Producer returns averaged \$12.93 per hundredweight, \$0.19 per hundredweight below 1994. Marketings totaled 154 billion pounds, 1 percent above 1994. Marketings include whole milk sold to plants and dealers as well as milk sold directly to consumers.

An estimated 1.56 billion pounds of milk were used on farms where produced, 8 percent less than 1994. Calves were fed 78 percent of this milk with the remainder consumed in producer households.

> Milk Cows and Production of Milk and Milkfat: United States, 1993-95

	: : Number				of Milk and Milkfat 2/		
Year	: of	: Per Mil: /:	k Cow 	: Percentage : of Fat in All			
	: 1,000 Head	Pound		Percent	Million		
L993	• • 9,589	15,704	575	3.66	150,582	5,514.4	
1994	: 9,500	16,175	592	3.66	153,664	5,623.7	
1995	: 9,461	16,451	602	3.66	155,644	5,694.3	

Table Extraction from Government Reports [Pinto, McCallum, Wei, Croft, 2003]

100+ documents from www.fedstats.gov

of milk during 1995 at \$19.9 billion dollars, was
turns averaged \$12.93 per hundredweight,
1994. Marketings totaled 154 billion pounds,
gs include whole milk sold to plants and dealers
onsumers.

s of milk were used on farms where produced, s were fed 78 percent of this milk with the er households.

ction of Milk and Milkfat: 1993-95

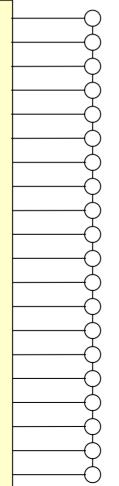
n of Milk and Milkfat 2/

w : Percentage : Total

----: of Fat in All :------

Milk Produced : Milk : Milkfat

CRF



Labels:

- Non-Table
- Table Title
- Table Header
- Table Data Row
- Table Section Data Row
- Table Footnote
- ... (12 in all)

Features:

- Percentage of digit chars
- Percentage of alpha chars
- Indented
- Contains 5+ consecutive spaces
- Whitespace in this line aligns with prev.
- Conjunctions of all previous features, time offset: {0,0}, {-1,0}, {0,1}, {1,2}.

Slide by Cohen & McCallum

Table Extraction Experimental Results

[Pinto, McCallum, Wei, Croft, 2003]

	Line labels, percent correct	
НММ	65 %	
Stateless MaxEnt	85 % <u>∆ error</u>	
CRF w/out conjunctions	52 %	
CRF	95 %	

Named Entity Recognition

Reuters stories on international news

Train on ~300k words

CRICKET - MILLNS SIGNS FOR BOLAND
CAPE TOWN 1996-08-22
South African provincial side Boland said on Thursday they had signed Leicestershire fast bowler David Millns on a one year contract.
Millns, who toured Australia with
England A in 1992, replaces
former England all-rounder
Phillip DeFreitas as Boland's
overseas professional.

Labels:	Examples:
PER	Yayuk Basuki
	Innocent Butare
ORG	3M
	KDP
	Leicestershire
LOC	Leicestershire
	Nirmal Hriday
	The Oval
MISC	Java
	Basque
	1,000 Lakes Rally

Automatically Induced Features

[McCallum 2003]

Index	Feature
0	inside-noun-phrase (o _{t-1})
5	stopword (o _t)
20	capitalized (o _{t+1})
75	word=the (o _t)
100	in-person-lexicon (o _{t-1})
200	word=in (o _{t+2})
500	word=Republic (o _{t+1})
711	word=RBI (o _t) & header=BASEBALL
1027	header=CRICKET (o _t) & in-English-county-lexicon (o _t)
1298	company-suffix-word (firstmention _{t+2})
4040	location (o _t) & POS=NNP (o _t) & capitalized (o _t) & stopword (o _{t-1})
4945	moderately-rare-first-name (o _{t-1}) & very-common-last-name (o _t)
4474	word=the (o _{t-2}) & word=of (o _t)

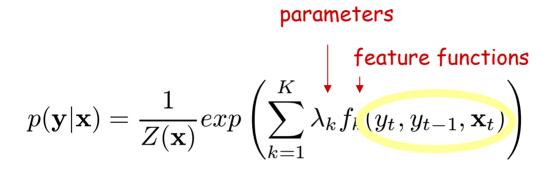
Named Entity Extraction Results

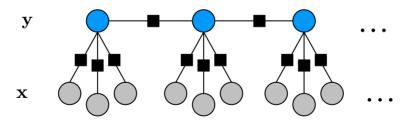
[McCallum & Li, 2003]

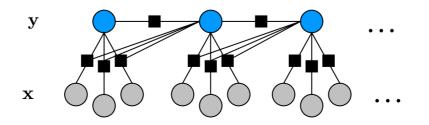
Method	F1	# parameters
BBN's Identifinder, word features	79%	~500k
CRFs word features, w/out Feature Induction	80%	~500k
CRFs many features, w/out Feature Induction	75%	~3 million
CRFs many candidate features with Feature Induction	90%	~60k

So far ...

• ... only looked at linear-chain CRFs







General CRFs vs. HMMs

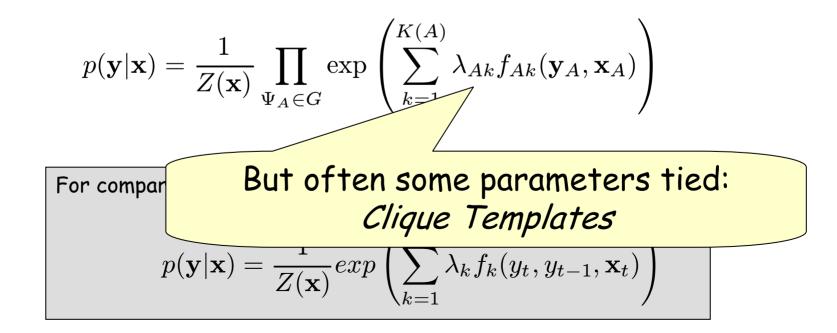
- More general and expressive modeling technique
- Comparable computational efficiency
- Features may be arbitrary functions of any or all observations
- Parameters need not fully specify generation of observations; require less training data
- Easy to incorporate domain knowledge
- State means only "state of process", vs "state of process" and "observational history I'm keeping"

Slide by Cohen & McCallum

General CRFs

Definition

 Let G be a factor graph. Then p(y|x) is a CRF if for any x, p(y|x) factorizes according to G.



Questions

• #1 - Inference

Again, learning requires computing $P(y_c|x)$ for given observations $x_1 x_N$ and CRF θ .

• #2 - Inference

Given observations $x_1 _x_N$ and CRF θ , what is the most likely labeling $y^* = arg \max_y p(y|x)$?

• #3 - Learning

Given iid training data $D=\{x^{(i)}, y^{(i)}\}$, i=1...N, how do we estimate the parameters $\theta=\{\lambda_k\}$ of a CRF?

Inference

- For graphs with small treewidth
 - Junction Tree Algorithm
- Otherwise approximate inference
 - Sampling-based approaches: MCMC, ...
 - Not useful for training (too slow for every iteration)
 - Variational approaches: Belief Propagation, ...
 - Popular

Learning

inference

- Similar to linear-chain case
- Substitute model into likelihood ...

$$l(\theta) = \sum_{C_p \in \mathcal{C}} \sum_{\Psi_c \in C_p} \sum_{k=1}^{K(p)} \lambda_{pk} f_{pk}(\mathbf{x}_x, \mathbf{y}_c) - \log Z(\mathbf{x})$$

... and compute partial derivatives,

$$\frac{\partial l}{\partial \lambda_{pk}} = \sum_{\Psi_c \in C_p} f_{pk}(\mathbf{x}_c, \mathbf{y}_c) - \sum_{\Psi_c \in C_p} \sum_{\mathbf{y}'_c} f_{pk}(\mathbf{x}_c, \mathbf{y}'_c) \frac{p(\mathbf{y}'_c | \mathbf{x})}{p(\mathbf{y}'_c | \mathbf{x})}$$

and run nonlinear optimization (L-BFGS)

Markov Logic

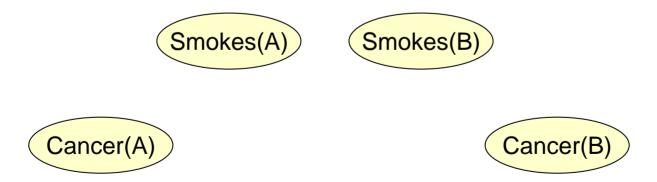
- A general language capturing logic and uncertainty
- A Markov Logic Network (MLN) is a set of pairs
 (F, w) where
 - F is a formula in first-order logic
 - w is a real number
- Together with constants, it defines a Markov network with
 - One node for each ground predicate
 - One feature for each ground formula F,
 with the corresponding weight w

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x)\right)$$

Slide by Poon

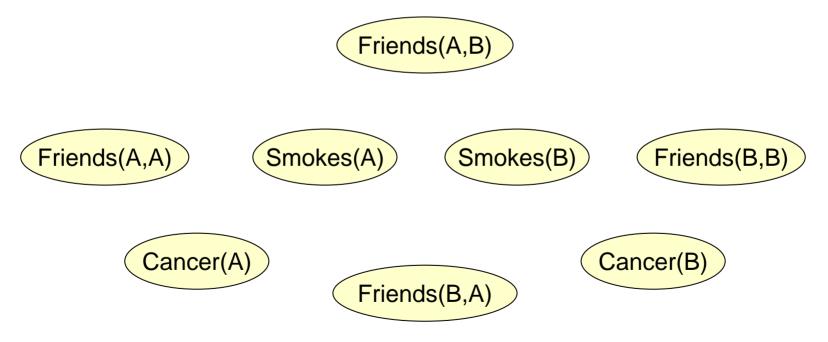
1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$



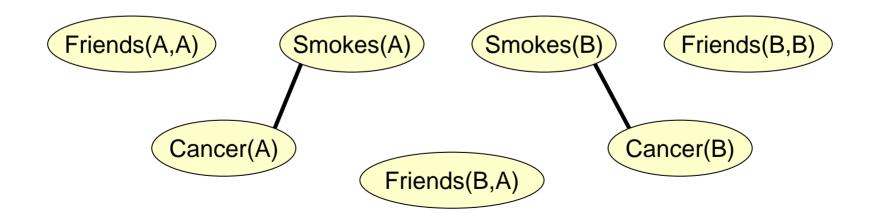
1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$



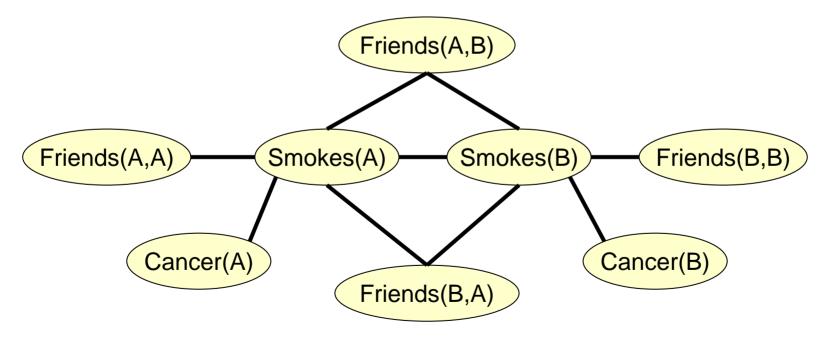
1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$



1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$



Joint Inference in Information Extraction

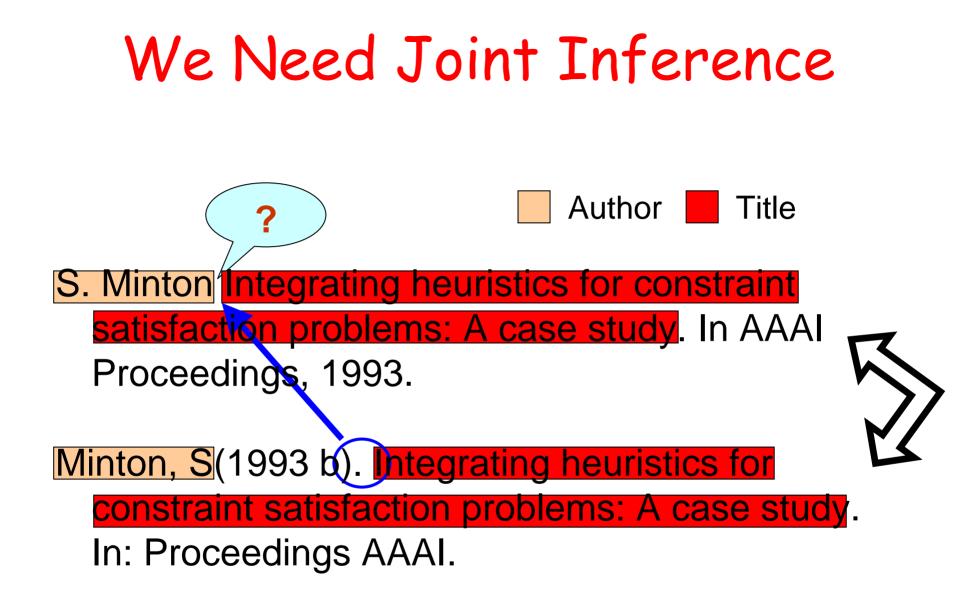
Hoifung Poon Dept. Computer Science & Eng. University of Washington

(Joint work with Pedro Domingos)

Slide by Poon

Problems of Pipeline Inference

- AI systems typically use pipeline architecture
 - Inference is carried out in stages
 - E.g., information extraction, natural language processing, speech recognition, vision, robotics
- Easy to assemble & low computational cost, but ...
 - Errors accumulate along the pipeline
 - No feedback from later stages to earlier ones
- Worse: Often process one object at a time



Slide by Poon