
CSE574 - Administriva
• No class on Fri 01/25 (Ski Day)



Last Wednesday
• HMMs

– Most likely individual state at time t: (forward)
– Most likely sequence of states (Viterbi)
– Learning using EM

• Generative vs. Discriminative Learning
– Model p(y,x) vs. p(y|x)
– p(y|x) : don’t bother about p(x) if we only want 

to do classification



Today
• Markov Networks

– Most likely individual state at time t: (forward)
– Most likely sequence of states (Viterbi)
– Learning using EM

• CRFs
– Model p(y,x) vs. p(y|x)
– p(y|x) : don’t bother about p(x) if we only want 

to do classification
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Sequence
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General
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Figure by Sutton & McCallum



Graphical Models
• Family of probability distributions that factorize in a 

certain way
• Directed (Bayes Nets)

• Undirected (Markov Random Field)

• Factor Graphs
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Node is independent of its non-
descendants given its parents

Node is independent all other 
nodes given its neighbors



Markov Networks
• Undirected graphical models
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Markov Networks
• Undirected graphical models

B

DC

A

• Potential functions defined over cliques
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Hammersley-Clifford Theorem
If Distribution is strictly positive (P(x) > 0)
And Graph encodes conditional independences
Then Distribution is product of potentials over    

cliques of graph

Inverse is also true.

Slide by Domingos



Markov Nets vs. Bayes Nets

Property Markov Nets Bayes Nets

Form Prod. potentials Prod. potentials

Potentials Arbitrary Cond. probabilities

Cycles Allowed Forbidden

Partition 
func.

Z = ? Z = 1

Indep. check Graph separation D-separation

Indep. props. Some Some

Inference MCMC, BP, etc. Convert to Markov

Slide by Domingos



Inference in Markov Networks
• Goal: compute marginals & conditionals of

• Exact inference is #P-complete
• Conditioning on Markov blanket is easy:

• Gibbs sampling exploits this
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E.g.: What is         ?
What is                                        ?P (xi|x1, . . . , xi−1, xi+1, . . . , xN)

P (xi)



Markov Chain Monte Carlo
• Idea: 

– create chain of samples x(1), x(2), …
where x(i+1) depends on x(i)

– set of samples x(1), x(2), … used to approximate 
p(x)
X1

X2

X3

X4 X5

x(1) = (X1 = x
(1)
1 , X2 = x

(1)
2 , . . . , X5 = x

(1)
5 )

x(2) = (X1 = x
(2)
1 , X2 = x

(2)
2 , . . . , X5 = x

(2)
5 )

x(3) = (X1 = x
(3)
1 , X2 = x

(3)
2 , . . . , X5 = x

(3)
5 )
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Markov Chain Monte Carlo

• Gibbs Sampler
1. Start with an initial assignment to nodes
2. One node at a time, sample node given 
others

3. Repeat
4. Use samples to compute P(X)

• Convergence: Burn-in + Mixing time
• Many modes  ⇒ Multiple chains

Iterations required to move away 
from particular initial condition

Iterations required to
be close to stationary dist.

Slide by Domingos



Other Inference Methods
• Belief propagation (sum-product)
• Mean field / Variational approximations

Slide by Domingos



Learning
• Learning Weights

– Maximize likelihood
– Convex optimization: gradient ascent, quasi-

Newton methods, etc.
– Requires inference at each step (slow!)

• Learning Structure
– Feature Search
– Evaluation using Likelihood, …



Back to CRFs
• CRFs are conditionally trained Markov 
Networks



Linear-Chain 
Conditional Random Fields

• From HMMs to CRFs

can also be written as

(set                  , …)
We let new parameters vary freely, so we
need normalization constant Z.

p(y,x) =
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X
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λij := log p(y
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Linear-Chain 
Conditional Random Fields

• Introduce feature functions

(                    ,                   )

• Then the conditional distribution is

fk(yt, yt−1, xt)
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0, xt) := 1y=i1y0=j
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One feature per transition One feature per state-observation pair

This is a 
linear-chain 

CRF,
but includes 

only 
current 
word’s 

identity as 
a feature



Linear-Chain 
Conditional Random Fields

• Conditional p(y|x) 
that follows from joint p(y,x) of HMM 
is a linear CRF with certain feature  
functions!



p(y|x) =
1

Z(x)
exp

Ã
KX
k=1

λkfk(yt , yt−1, xt)

!

Linear-Chain 
Conditional Random Fields

• Definition:
A linear-chain CRF is a distribution that 
takes the form

where Z(x) is a normalization function

Z(x) =
X
y
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Ã
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!

parameters

feature functions



Linear-Chain
Conditional Random Fields

• HMM-like linear-chain CRF

• Linear-chain CRF, in which transition score 
depends on the current observation

…

…x

y

…

…x

y



Questions
• #1 – Inference

Given observations x1 …xN and CRF θ, what is P(yt,yt-1|x) 
and what is Z(x)?  (needed for learning)

• #2 – Inference
Given observations x1 …xN and CRF θ, what is the most 
likely (Viterbi) labeling y*= arg maxy p(y|x)?

• #3 – Learning
Given iid training data D={x(i), y(i)}, i=1..N, how do we 
estimate the parameters θ={ λk } of a linear-chain CRF?



Solutions to #1 and #2
• Forward/Backward and Viterbi algorithms similar 

to versions for HMMs
• HMM as factor graph

• Then

p(y,x) =

TY
t=1

p(yt|yt−1)p(xt|yt)

p(y,x) =

TY
t=1

Ψtp(yt, yt−1, xt)

Ψt(j, i, x) := p(yt = j|yt−1 = i)p(xt = x|yt = j)

βt(i) =
X
j∈S
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αt(i) =
X
i∈S
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δt(j) = max
i∈S
Ψt(j, i, xt)δt−1(i)

forward recursion

backward recursion

Viterbi recursion

HMM Definition



Forward/Backward for 
linear-chain CRFs …

• … identical to HMM version except for factor 
functions

• CRF can be written as

• Same:

p(y|x) =
1

Z

TY
t=1

Ψt(yt, yt−1, xt)

Ψt(yt, yt−1, xt) := exp
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!
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forward recursion

backward recursion

Viterbi recursion
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!CRF Definition



Forward/Backward for 
linear-chain CRFs

• Complexity same as for HMMs
Time:

O(K2N)
Space:

O(KN)
K = |S| #states
N length of sequence

Linear in length of sequence!



Solution to #3 - Learning
• Want to maximize Conditional log likelihood

l(θ) =

NX
i=1

log p(y(i)|x(i))

CRFs typically learned using numerical 
optimization of likelihood.

(Also possible for HMMs, but we only 
discussed EM)

−
KX
k=1

λ2k
2σ2

Often large number of parameters, so 
need to avoid overfitting

• Add Regularizer

l(θ) =

NX
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TX
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λkfk(y
(i)
t , y

(i)
t−1,x

(i)
t )−

NX
i=1

logZ(x(i))

• Substitute in CRF model into likelihood



Regularization
• Commonly used l2-norm (Euclidean)

– Corresponds to Gaussian prior over parameters

• Alternative is l1-norm
– Corresponds to exponential prior over parameters
– Encourages sparsity

• Accuracy of final model not sensitive to

−
KX
k=1

λ2k
2σ2

−
KX
k=1

|λk|

σ

σ



Optimizing the Likelihood
• There exists no closed-form solution, so must use 

numerical optimization.
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k=1

λkfk(y
(i)
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∂l

∂λk
=

NX
i=1

TX
t=1

fk(y
(i)
t , y

(i)
t−1,x

(i)
t )−

NX
i=1

TX
t=1
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Figure by Cohen & McCallum

• l(θ) is concave and with 
regularizer strictly concave

only one global optimum



Optimizing the Likelihood
• Steepest Ascent

very slow!
• Newton’s method

fewer iterations, but requires Hessian-1

• Quasi-Newton methods
approximate Hessian by analyzing successive gradients

– BFGS
fast, but approximate Hessian requires quadratic space

– L-BFGS (limited-memory)
fast even with limited memory!

– Conjugate Gradient



Computational Cost
l(θ) =
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• For each training instance: 
O(K2T) (using forward-backward)

• For N training instances, G iterations: 
O(K2TNG)

Examples:
- Named-entity recognition 11 labels; 200,000 words < 2 hours
- Part-of-speech tagging 45 labels, 1 million words > 1 week



Person name Extraction
[McCallum 2001
unpublished]
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Person name Extraction
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Features in Experiment
Capitalized Xxxxx
Mixed Caps XxXxxx
All Caps XXXXX
Initial Cap X….
Contains Digit xxx5
All lowercase xxxx
Initial X
Punctuation .,:;!(), etc
Period .
Comma ,
Apostrophe ‘
Dash -
Preceded by HTML tag

Character n-gram classifier 
says string is a person 
name (80% accurate)

In stopword list
(the, of, their, etc)

In honorific list
(Mr, Mrs, Dr, Sen, etc)

In person suffix list
(Jr, Sr, PhD, etc)

In name particle list 
(de, la, van, der, etc)

In Census lastname list;
segmented by P(name)

In Census firstname list;
segmented by P(name)

In locations lists
(states, cities, countries)

In company name list
(“J. C. Penny”)

In list of company suffixes
(Inc, & Associates, Foundation)

Hand-built FSM person-name 
extractor says yes, 
(prec/recall  ~ 30/95)

Conjunctions of all previous 
feature pairs, evaluated at 
the current time step.

Conjunctions of all previous 
feature pairs, evaluated at 
current step and one step 
ahead.

All previous features, evaluated 
two steps ahead.

All previous features, evaluated 
one step behind.

Total number of features = ~500k
Slide by Cohen & McCallum



Training and Testing
• Trained on 65k words from 85 pages, 30 
different companies’ web sites.

• Training takes 4 hours on a 1 GHz 
Pentium.

• Training precision/recall is 96% / 96%.

• Tested on different set of web pages with 
similar size characteristics.

• Testing precision is 92 – 95%,
recall is 89 – 91%.

Slide by Cohen & McCallum



Part-of-speech Tagging

The asbestos fiber , crocidolite, is unusually resilient once

it enters the lungs , with even brief exposures to it causing

symptoms that show up decades later , researchers said .

DT      NN         NN  ,       NN       , VBZ    RB          JJ IN

PRP VBZ DT NNS  ,  IN     RB    JJ        NNS    TO PRP   VBG

NNS    WDT VBP  RP     NNS     JJ   ,        NNS      VBD .

45 tags, 1M words training data, Penn Treebank

Error oov error error Δ err oov error Δ err

HMM 5.69% 45.99%

CRF 5.55% 48.05% 4.27% -24% 23.76% -50%

Using spelling features*

* use words, plus overlapping features: capitalized, begins with #, 
contains hyphen, ends in -ing, -ogy, -ed, -s, -ly, -ion, -tion, -ity, -ies.

[Lafferty, McCallum, Pereira 2001] Slide by Cohen & McCallum



Table Extraction 
from Government Reports

Cash receipts from marketings of milk during 1995 at $19.9 billion dollars, was 
slightly below 1994. Producer returns averaged $12.93 per hundredweight,        
$0.19 per hundredweight below 1994.  Marketings totaled 154 billion pounds,     
1 percent above 1994.  Marketings include whole milk sold to plants and dealers 
as well as milk sold directly to consumers.                     

An estimated 1.56 billion pounds of milk were used on farms where produced,     
8 percent less than 1994.  Calves were fed 78 percent of this milk with the     
remainder consumed in producer households.                      

Milk Cows and Production of Milk and Milkfat:                 
United States, 1993-95                             

--------------------------------------------------------------------------------
:            :           Production of Milk and Milkfat 2/           
:   Number   :-------------------------------------------------------

Year   :     of     :   Per Milk Cow    :   Percentage   :  Total       
:Milk Cows 1/:-------------------: of Fat in All  :------------------
:            :  Milk  : Milkfat : Milk Produced  : Milk  : Milkfat

--------------------------------------------------------------------------------
: 1,000 Head   --- Pounds --- Percent       Million Pounds   
:                                                    

1993       :   9,589      15,704     575           3.66       150,582  5,514.4  
1994       :   9,500      16,175     592           3.66       153,664  5,623.7  
1995       :   9,461      16,451     602           3.66       155,644  5,694.3  
--------------------------------------------------------------------------------
1/  Average number during year, excluding heifers not yet fresh.
2/  Excludes milk sucked by calves.                             

Slide by Cohen & McCallum



Table Extraction 
from Government Reports

of milk during 1995 at $19.9 billion dollars, was 

eturns averaged $12.93 per hundredweight,        

 1994.  Marketings totaled 154 billion pounds,     

ngs include whole milk sold to plants and dealers 

consumers.                     

ds of milk were used on farms where produced,     

es were fed 78 percent of this milk with the     

cer households.                      

uction of Milk and Milkfat:                 

1993-95                             

------------------------------------

n of Milk and Milkfat 2/           

--------------------------------------

w    :   Percentage   :  Total       

----: of Fat in All  :------------------

Milk Produced  : Milk  : Milkfat

------------------------------------

P t Milli P d

CRF
Labels:
• Non-Table
• Table Title
• Table Header
• Table Data Row
• Table Section Data Row
• Table Footnote
• ... (12 in all)

[Pinto, McCallum, Wei, Croft, 2003]

Features:
• Percentage of digit chars
• Percentage of alpha chars
• Indented
• Contains 5+ consecutive spaces
• Whitespace in this line aligns with prev.
• ...
• Conjunctions of all previous features, 

time offset: {0,0}, {-1,0}, {0,1}, {1,2}.

100+ documents from www.fedstats.gov

Slide by Cohen & McCallum



Table Extraction 
Experimental Results

Line labels,
percent correct

95 %

65 %

Δ error
= 85%

85 %

HMM

Stateless
MaxEnt

CRF w/out
conjunctions

CRF

52 %

[Pinto, McCallum, Wei, Croft, 2003]
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Named Entity Recognition

CRICKET -
MILLNS SIGNS FOR BOLAND

CAPE TOWN 1996-08-22

South African provincial side 
Boland said on Thursday they 
had signed Leicestershire fast 
bowler David Millns on a one 
year contract.  
Millns, who toured Australia with 
England A in 1992, replaces 
former England all-rounder 
Phillip DeFreitas as Boland's 
overseas professional.

Labels: Examples:

PER Yayuk Basuki
Innocent Butare

ORG 3M
KDP
Leicestershire

LOC Leicestershire
Nirmal Hriday
The Oval

MISC Java
Basque
1,000 Lakes Rally

Reuters stories on international news Train on ~300k words

Slide by Cohen & McCallum



Automatically Induced Features
Index Feature
0 inside-noun-phrase (ot-1)
5 stopword (ot)
20 capitalized (ot+1)
75 word=the (ot)
100 in-person-lexicon (ot-1)
200 word=in (ot+2)
500 word=Republic (ot+1)
711 word=RBI (ot) & header=BASEBALL
1027 header=CRICKET (ot) & in-English-county-lexicon (ot)
1298 company-suffix-word (firstmentiont+2)
4040 location (ot) & POS=NNP (ot) & capitalized (ot) & stopword (ot-1)
4945 moderately-rare-first-name (ot-1) & very-common-last-name (ot)
4474 word=the (ot-2) & word=of (ot)

[McCallum 2003]

Slide by Cohen & McCallum



Named Entity Extraction Results

Method F1 # parameters

BBN's Identifinder, word features 79% ~500k

CRFs word features, 80% ~500k
w/out Feature Induction

CRFs many features, 75% ~3 million
w/out Feature Induction

CRFs many candidate features 90% ~60k
with Feature Induction

[McCallum & Li, 2003]

Slide by Cohen & McCallum



So far …
• … only looked at linear-chain CRFs

p(y|x) =
1

Z(x)
exp

Ã
KX
k=1

λkfk(yt , yt−1, xt)

!
parameters

feature functions

…

…x

y

…

…x

y



General CRFs vs. HMMs
• More general and expressive modeling technique

• Comparable computational efficiency

• Features may be arbitrary functions of any or all
observations

• Parameters need not fully specify generation of 
observations; require less training data

• Easy to incorporate domain knowledge

• State means only “state of process”, vs
“state of process” and “observational history I’m 
keeping”

Slide by Cohen & McCallum



General CRFs
• Definition

– Let G be a factor graph. Then p(y|x) is a CRF if 
for any x, p(y|x) factorizes according to G.

p(y|x) =
1

Z(x)

Y
ΨA∈G

exp

⎛⎝K(A)X
k=1

λAkfAk(yA,xA)

⎞⎠

p(y|x) =
1

Z(x)
exp

Ã
KX
k=1

λkfk(yt , yt−1,xt)

!For comparison: linear-chain CRFsBut often some parameters tied:
Clique Templates



Questions
• #1 – Inference

Again, learning requires computing P(yc|x) for given 
observations x1 …xN and CRF θ.

• #2 – Inference
Given observations x1 …xN and CRF θ, what is the most 
likely labeling y*= arg maxy p(y|x)?

• #3 – Learning
Given iid training data D={x(i), y(i)}, i=1..N, how do we 
estimate the parameters θ={ λk } of a CRF?



Inference
• For graphs with small treewidth

– Junction Tree Algorithm
• Otherwise approximate inference

– Sampling-based approaches: 
MCMC, …
• Not useful for training (too slow for every iteration)

– Variational approaches:
Belief Propagation, …
• Popular



Learning
• Similar to linear-chain case
• Substitute model into likelihood …

… and compute partial derivatives, …

and run nonlinear optimization (L-BFGS)

l(θ) =
X
Cp∈C

X
Ψc∈Cp

K(p)X
k=1

λpkfpk(xx,yc)− logZ(x)

∂l

∂λpk
=

X
Ψc∈Cp

fpk(xc, yc) −
X
Ψc∈Cp

X
y0c

fpk(xc,y
0
c)p(y

0
c|x)

inference



Markov Logic
• A general language capturing logic and 

uncertainty
• A Markov Logic Network (MLN) is a set of pairs

(F, w) where
– F is a formula in first-order logic
– w is a real number

• Together with constants, it defines a Markov 
network with
– One node for each ground predicate
– One feature for each ground formula F, 

with the corresponding weight w

1( ) exp ( )i i
i

P x w f x
Z

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑
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Example of an MLN

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀
⇒∀

1.1
5.1

Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Suppose we have two constants: Anna (A) and Bob (B)

Slide by Domingos
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Joint Inference in Information 
Extraction
Hoifung Poon

Dept. Computer Science & Eng.
University of Washington

(Joint work with Pedro Domingos)
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Problems of Pipeline 
Inference

• AI systems typically use pipeline architecture
– Inference is carried out in stages
– E.g., information extraction, natural language 

processing, speech recognition, vision, robotics

• Easy to assemble & low computational cost, 
but …
– Errors accumulate along the pipeline
– No feedback from later stages to earlier ones

• Worse: Often process one object at a time
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We Need Joint Inference

?
S. Minton Integrating heuristics for constraint 

satisfaction problems: A case study. In AAAI 
Proceedings, 1993.

Minton, S(1993 b). Integrating heuristics for 
constraint satisfaction problems: A case study. 
In: Proceedings AAAI.

Author Title
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