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CSE 574 
Finite State Machines for Information Extraction

• Today and Friday
– Dan @ IUI on the Canary Islands
– I am presenting

• Topics
– HMMs, Conditional Random Fields
– Inference and Learning
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Landscape of IE Techniques:  Models

Lexicons

Alabama
Alaska
…
Wisconsin
Wyoming

Abraham Lincoln was born in Kentucky.

member?

Classify Pre-segmented
Candidates

Abraham Lincoln was born in Kentucky.

Classifier

which class?

Sliding Window
Abraham Lincoln was born in Kentucky.

Classifier
which class?

Try alternate
window sizes:

Boundary Models
Abraham Lincoln was born in Kentucky.

Classifier

which class?

BEGIN END BEGIN END

BEGIN

Context Free Grammars
Abraham Lincoln was born in Kentucky.
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Finite State Machines
Abraham Lincoln was born in Kentucky.

Most likely state sequence?

Slides from Cohen & McCallumEach model can capture words, formatting, or both 



Finite State Models
Naïve Bayes

Logistic 
Regression

Linear-chain CRFs

HMMs
Generative 

directed models

General CRFs

Sequence

Sequence

Conditional Conditional Conditional

General
Graphs

General
Graphs



Graphical Models
• Family of probability distributions that factorize in a 

certain way
• Directed (Bayes Nets)

• Undirected (Markov Random Field)

• Factor Graphs

x0

x1
x2

x3

x4

p(x) =
QK
i=1 p(xi|Parents(xi))

p(x) = 1
Z

Q
AΨA(xA)

x = x1x2 . . . xK

x0

x1
x2

x4

x3
x5

ΨA factor function

A ⊂ {x1, . . . , xK}

x0

x1
x2

x4

x3
x5

p(x) = 1
Z

Q
C ΨC(xC)

C ⊂ {x1, . . . , xK} clique

ΨC potential function

Node is independent of its non-
descendants given its parents

Node is independent all other 
nodes given its neighbors



Recap: Naïve Bayes
• Assumption: features independent given label
• Generative Classifier

– Model joint distribution p(x,y)

– Inference

– Learning: counting
– Example

y

x1
x2

xK
p(y,x) = p(y)

KY
k=1

p(xk|y)
...

p(y|x) = p(y)
KY
k=1

p(xk|y)
1

p(x)

The article appeared in the Seattle Times.
city?

length

suffix

Labels of
neighboring

words
dependent!

capitalization

Need to
consider
sequence!



Hidden Markov Models

• Generative Sequence Model
– 2 assumptions to make joint distribution tractable

1. Each state depends only on 
its immediate predecessor.

2. Each observation depends 
only on current state.

Finite state model

x1 x2 x3 x4 x5 x6 x7 x8

Graphical Model

transitions

observations

…

…

state
sequence

observation
sequence

Yesterday Pedro

other

person

location

person

other person …

yt−1

xt−1 xt xt+1

yt yt+1

…

y1 y2 y3 y4 y5 y6 y7 y8



Hidden Markov Models

• Generative Sequence Model

• Model Parameters 
– Start state probabilities
– Transition probabilities
– Observation probabilities

Finite state model

x1 x2 x3 x4 x5 x6 x7 x8

Graphical Model

transitions

observations

…

…

state
sequence

observation
sequence

Yesterday Pedro

other

person

location

person

other person …

p(y,x) =

TY
t=1

p(yt|yt−1)p(xt|yt)
yt−1

xt−1 xt xt+1

yt yt+1

p(y1) := p(y1|y0)

p(yt|yt−1)

p(xt|yt)

…

y1 y2 y3 y4 y5 y6 y7 y8



IE with Hidden Markov Models

Yesterday Pedro Domingos spoke this example sentence.

Yesterday Pedro Domingos spoke this example sentence.

Person name: Pedro Domingos

Given a sequence of observations:

and a trained HMM:

Find the most likely state sequence:  (Viterbi)

Any words said to be generated by the designated “person name”
state extract as a person name:

),(maxarg osPs
vv

v

person name
location name
background

Slide by Cohen & McCallum



IE with Hidden Markov Models
For sparse extraction tasks :
• Separate HMM for each type of target 
• Each HMM should 

– Model entire document
– Consist of target and non-target states
– Not necessarily fully connected

9Slide by Okan Basegmez



Information Extraction with HMMs
• Example – Research Paper Headers

10Slide by Okan Basegmez



HMM Example: “Nymble”

Other examples of shrinkage for HMMs in IE: [Freitag and McCallum ‘99]

Task: Named Entity Extraction

Train on ~500k words of news wire text.

Case   Language    F1  .
Mixed   English 93%
Upper English 91%
Mixed Spanish 90%

[Bikel, et al 1998], 
[BBN “IdentiFinder”]

Person

Org

Other

(Five other name classes)

start-of-
sentence

end-of-
sentence

Transition
probabilities

Observation
probabilities

Back-off to: Back-off to:

or

Results:

Slide by Cohen & McCallum

p(yt|yt−1, xt−1)

p(yt|yt−1)

p(yt)

p(xt|yt, yt−1)

p(xt|yt, xt−1)

p(xt|yt)

p(xt)



A parse of a sequence
Given a sequence x = x1……xN,
A parse of o is a sequence of states y = y1, ……, yN
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x1 x2 x3 xK

2

1
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Slide by Serafim Batzoglou
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other

location



Question #1 – Evaluation
GIVEN

A sequence of observations x1 x2 x3 x4 ……xN

A trained HMM 
θ=(         ,        ,      )

QUESTION

How likely is this sequence, given our HMM ?
P(x,θ)

p(yt|yt−1) p(xt|yt) p(y1)

Why do we care?

Need it for learning to choose among competing 
models!



Question #2 - Decoding
GIVEN

A sequence of observations x1 x2 x3 x4 ……xN

A trained HMM  
θ=(         ,        ,      )

QUESTION

How dow we choose the corresponding parse 
(state sequence) y1 y2 y3 y4 ……yN , which “best”
explains x1 x2 x3 x4 ……xN ?

p(yt|yt−1) p(xt|yt) p(y1)

There are several reasonable optimality criteria: 
single optimal sequence, average statistics for 
individual states, …



Question #3 - Learning
GIVEN

A sequence of observations x1 x2 x3 x4 ……xN

QUESTION

How do we learn the model parameters
θ =(         ,        ,      ) to maximize P(x, λ ) ?p(yt|yt−1) p(xt|yt) p(y1)



Solution to #1: Evaluation
Given observations x=x1 …xN and HMM θ, what is p(x) ?

Naïve: enumerate every possible state sequence y=y1 …yN
Probability of x and given particular y

Probability of particular y

Summing over all possible state sequences we get

p(x|y) =
TY
t=1

p(xt|yt)

p(y) =

TY
t=1

p(yt|yt−1)

p(x) =
X
all y

p(x|y)p(y)

NT state sequences!

2T multiplications 
per sequence

For small HMMs
T=10, N=10

there are 10 
billion sequences!



Solution to #1: Evaluation
Use Dynamic Programming:

Define forward variable

probability that at time t
- the state is yi
- the partial observation sequence x=x1 …xt has been 

omitted

αt(i) = P (x1x2...xt, yt = Si)



p(x) =
X
y

p(y)p(x|y)

=
X
y

Y
t=1..T

p(yt|yt−1)p(xt|yt)

=
X
yT

X
yT−1

p(yT , yT−1, xT )
X
yT−2

p(yT−1 |yT−2)p(xT−1|yT−1)
X
yT−3

. . .

Solution to #1: Evaluation
• Use Dynamic Programming

• Cache and reuse inner sums
• Define forward variables

αt(i) := P (x1x2...xt, yt = Si)

probability that at time t
- the state is yt = Si
- the partial observation sequence x=x1 …xt has been omitted



The Forward Algorithm

INITIALIZATION

INDUCTION

TERMINATION

αt(i) = p(x1x2...xt, yt = Si)

=
X
j∈S

αt−1(j)p(yt = Si|yt−1 = Sj)p(xt|yt)

α1(i) = p(y1 = Si)p(x1|y1)

p(x) =
X
j∈S

αT (j)

αt(i) := P (x1x2...xt, yt = Si)

Time:
O(K2N)

Space:
O(KN)

K = |S| #states
N length of sequence



p(y
t =

S
3 |y

t−1 =
S
2 )

p(yt = S3|yt−1 = S3)

The Forward Algorithm

S1

S2

S3

SN

S1

S2

S3

SN

t− 1 t
ot

αt−1(1)

αt−1(2)

αt−1(3)

αt−1(N)

αt(3)

p(y
t =
S
3 |y
t−
1 =
S
1 )

p(
y t
=
S3
|y t−

1
=
SN
)

p(xt = ot|yt = S3)

αt(i) := P (x1x2...xt, yt = Si)



p(yt+1 = S3|yt = S3)

βt+1(N)

The Backward Algorithm

S1

S2

S3

SN

S1

S2

S3

SN

p(yt
+1
= S

2|y
t
= S

3)

t t+ 1
ot+1

βt+1(1)

p(
y t+
1
=
S 1
|y t
=
S 3
)

p(y
t+1 =

S
N |y

t =
S
3 ) p(xt = ot+1|yt = S3)

βt+1(2)

βt+1(3)

βt(i) := P (yt = Si, xt+1xt+2...xT)



The Backward Algorithm

INITIALIZATION

INDUCTION

TERMINATION

βt(i) = p(yt = Si, xt+1, xt+2 . . . xT )

=
X
j∈S

p(yt+1 = Sj |yt = Si)p(xt+1|yt+1)βt+1(j)

βT (i) = 1

p(x) =
X
j∈S

p(y1 = Sj)p(x1|y1)β1(j)

βt(i) := P (yt = Si, xt+1xt+2...xT)

Time:
O(K2N)

Space:
O(KN)



Solution to #2 - Decoding
Given x=x1 …xN and HMM θ, what is “best” parse y1 …yN?

Several optimal solutions
• 1. States which are individually most likely:

most likely state y*
t at time t is then

P (yt = Si|x) =
αt(i)βt(i)

P (x)
=

αt(i)βt(i)PN
i=1 αt(i)βt(i)

y∗t = argmax1≤i≤N P (yt = Si|x)

But some transitions may 
have 0 probability!



Solution to #2 - Decoding
Given x=x1 …xN and HMM θ, what is “best” parse y1 …yN?

Several optimal solutions
• 1. States which are individually most likely
• 2. Single best state sequence

We want to find sequence y1 …yN,
such that P(x,y) is maximized

y* = argmaxy P( x, y )

Again, we can use dynamic programming!

1

2

K
…

1

2

K
…

1

2

K
…

…

…

…

1

2

K
…

o1 o2 o3 oK

2

1

K

2



The Viterbi Algorithm
DEFINE

INITIALIZATION

INDUCTION

TERMINATION

δt(i) = max
y1,y2,...,yt−1

P (y1, y2, . . . , yt−1, yt = i, o1, o2, . . . , ot|λ)

δ1(i) = p(y1 = Si)p(x1|y1 = Si)

δt(j) = max
i∈S

δt−1(i)p(yt = Sj |yt−1 = Si)p(xt|yt = Sj)

p∗ = max
i∈S

δT (i)

Backtracking to get state 
sequence y*



The Viterbi Algorithm

Time:
O(K2T)

Space:
O(KT)

State 1

x1 x2 ……xj-1 xj……………………………..xT

2

K

i δj(i)

Max

Remember:
δk(i) = probability of most likely state seq ending with state Sk

Slides from Serafim Batzoglou

Linear in length of sequence



The Viterbi Algorithm

27

Pedro Domingos



Solution to #3 - Learning
Given x1 …xN , how do we learn θ =(         ,       ,     ) to 

maximize P(x)?

• Unfortunately, there is no known way to 
analytically find a global maximum θ * such that

θ * = arg max P(o | θ)

• But it is possible to find a local maximum; given 
an initial model θ, we can always find a model θ’
such that 

P(o | θ’) ≥ P(o | θ)

p(yt|yt−1) p(xt|yt) p(y1)



Solution to #3 - Learning
• Use hill-climbing

– Called the forward-backward (or Baum/Welch) algorithm
• Idea

– Use an initial parameter instantiation
– Loop

• Compute the forward and backward probabilities for given model 
parameters and our observations

• Re-estimate the parameters
– Until estimates don’t change much



Expectation Maximization
• The forward-backward algorithm is an 
instance of the more general EM algorithm

– The E Step: 
Compute the forward and backward probabilities 
for given model parameters and our observations

– The M Step: 
Re-estimate the model parameters 
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Chicken & Egg Problem
• If we knew the actual sequence of states

– It would be easy to learn transition and emission 
probabilities

– But we can’t observe states, so we don’t!

• If we knew transition & emission probabilities
– Then it’d be easy to estimate the sequence of states 

(Viterbi)
– But we don’t know them!

Slide by Daniel S. Weld
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Simplest Version
• Mixture of two distributions

• Know: form of distribution & variance,
% =5

• Just need mean of each distribution

.01   .03   .05   .07   .09

Slide by Daniel S. Weld
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Input Looks Like

.01     .03     .05     .07     .09

Slide by Daniel S. Weld
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We Want to Predict

.01     .03     .05     .07     .09

?

Slide by Daniel S. Weld
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Chicken & Egg

.01     .03     .05     .07     .09

Note that coloring instances would be easy 
if we knew Gausians….

Slide by Daniel S. Weld
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Chicken & Egg

.01     .03     .05     .07     .09

And finding the Gausians would be easy
If we knew the coloring

Slide by Daniel S. Weld
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Expectation Maximization (EM)
• Pretend we do know the parameters

– Initialize randomly: set  θ1=?;   θ2=?

.01   .03   .05   .07   .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)
• Pretend we do know the parameters

– Initialize randomly
• [E step] Compute probability of instance 

having each possible value of the hidden 
variable

.01     .03     .05     .07     .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)
• Pretend we do know the parameters

– Initialize randomly
• [E step] Compute probability of instance 

having each possible value of the hidden 
variable

.01     .03     .05     .07     .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)
• Pretend we do know the parameters

– Initialize randomly
• [E step] Compute probability of instance 

having each possible value of the hidden 
variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally
having both values compute the new parameter 
values

Slide by Daniel S. Weld
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ML Mean of Single Gaussian

Uml = argminu Σi(xi – u)2

.01   .03   .05   .07   .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)

• [E step] Compute probability of instance 
having each possible value of the hidden 
variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally 
having both values compute the new parameter 
values

Slide by Daniel S. Weld
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Expectation Maximization (EM)

• [E step] Compute probability of instance 
having each possible value of the hidden 
variable

.01     .03     .05     .07     .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)

• [E step] Compute probability of instance 
having each possible value of the hidden 
variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally 
having both values compute the new parameter 
values

Slide by Daniel S. Weld
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• [E step] Compute probability of instance 
having each possible value of the hidden 
variable

Expectation Maximization (EM)

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally 
having both values compute the new parameter 
values

Slide by Daniel S. Weld



The Problem with HMMs
• We want more than an Atomic View of 
Words

• We want many arbitrary, overlapping 
features of words

identity of word
ends in “-ski”
is capitalized
is part of a noun phrase
is in a list of city names
is under node X in WordNet
is in bold font
is indented
is in hyperlink anchor
last person name was female
next two words are “and Associates”

y t-1 y t

x t

y t+1

x t+1x
t -1

…

…
part of

noun phrase

is “Wisniewski”

ends in
“-ski”

Slide by Cohen & McCallum



Finite State Models
Naïve Bayes HMMs

Generative 
directed models

Logistic 
Regression

Linear-chain CRFs General CRFs

Sequence

Sequence

Conditional Conditional Conditional

General
Graphs

General
Graphs

?



Problems with Richer Representation
and a Joint Model

These arbitrary features are not independent.
– Multiple levels of granularity (chars, words, phrases)
– Multiple dependent modalities (words, formatting, layout)
– Past & future

Two choices:
Model the dependencies.
Each state would have its own 
Bayes Net.  But we are already 
starved for training data!

Ignore the dependencies.
This causes “over-counting” of 
evidence (ala naïve Bayes).  
Big problem when combining 
evidence, as in Viterbi!

S t-1 S t

O t

S t+1

O t+1O
t -1

S t-1 S t

O t

S t+1

O t+1O
t -1Slide by Cohen & McCallum



Discriminative and Generative Models
• So far: all models generative
• Generative Models …

model P(x,y)
• Discriminative Models …

model P(x|y)

P(x|y) does not include a model of P(x), so it does not 
need to model the dependencies between features!



Discriminative Models often better
• Eventually, what we care about is p(y|x)!

– Bayes Net describes a family of joint distributions of, 
whose conditionals take certain form

– But there are many other joint models, whose conditionals 
also have that form.

• We want to make independence assumptions 
among y, but not among x.



Conditional Sequence Models
• We prefer a model that is trained to maximize a 

conditional probability rather than joint
probability:

P(y|x) instead of P(y,x):

– Can examine features, but not responsible for generating 
them.

– Don’t have to explicitly model their dependencies.
– Don’t “waste modeling effort” trying to generate what we 

are given at test time anyway.

Slide by Cohen & McCallum



Finite State Models
Naïve Bayes

Logistic 
Regression

Linear-chain CRFs General CRFs

HMMs
Generative 

directed models

Sequence

Sequence

Conditional Conditional Conditional

General
Graphs

General
Graphs



Linear-Chain 
Conditional Random Fields

• From HMMs to CRFs

can also be written as

(set                  , …)
We let new parameters vary freely, so we
need normalization constant Z.

p(y,x) =

TY
t=1

p(yt|yt−1)p(xt|yt)

p(y,x) =
1

Z
exp

⎛⎝X
t

X
i,j∈S

λij1{yt=i}1{yt−1=j} +
X
t

X
i∈S

X
o∈O

μoi1{yt=i}1{xt=o}

⎞⎠
λij := log p(y

0 = i|y = j)



Linear-Chain 
Conditional Random Fields

• Introduce feature functions

(                    ,                   )

• Then the conditional distribution is

fk(yt, yt−1, xt)

fij(y, y
0, xt) := 1y=i1y0=j

p(y,x) =
1

Z
exp

⎛⎝X
t

X
i,j∈S

λij1{yt=i}1{yt−1=j} +
X
t

X
i∈S

X
o∈O

μoi1{yt=i}1{xt=o}

⎞⎠

p(y, x) =
1

Z
exp

Ã
KX
k=1

λkfk(yt, yt−1, xt)

!

p(y|x) =
p(y,x)P
y0 p(y

0,x)
=

exp
³PK

k=1 λkfk(yt , yt−1, xt)
´

P
y0 exp

³PK
k=1 λkfk(yt , yt−1, xt)

´

fio(y, y
0, xt) := 1y=i1x=o

One feature per transition One feature per state-observation pair

This is a 
linear-chain 

CRF,
but includes 

only 
current 
word’s 

identity as 
a feature



Linear-Chain 
Conditional Random Fields

• Conditional p(y|x) that follows from joint 
p(y,x) of HMM is a linear CRF with certain 
feature functions!



p(y|x) =
1

Z(x)
exp

Ã
KX
k=1

λkfk(yt , yt−1, xt)

!

Linear-Chain 
Conditional Random Fields

• Definition:
A linear-chain CRF is a distribution that 
takes the form

where Z(x) is a normalization function

Z(x) =
X
y

exp

Ã
KX
k=1

λkfk(yt, yt−1,xt)

!

parameters

feature functions



Linear-Chain
Conditional Random Fields

• HMM-like linear-chain CRF

• Linear-chain CRF, in which transition score 
depends on the current observation

…

…x

y

…

…x

y
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