
CSE 574 Project Proposal:

Automatically detecting conflicting statements

using TextRunner

Alan Ritter∗

January 29, 2008

1 Introduction

1.1 Problem

I would like to use TextRunner to automatically detect conflicting statements
on the web. Although there are many types of conflicts, initially the most
promising approach seems to be detecting conflicts between functional relations.
I have done some initial investigation into the problem, and an initial set of
conflicts found using TextRunner for the Invented relation can be found here.
For the class project, I would like to extend this approach to discover conflicting
statements between arbitrary functional relations, instead of just a few hand-
selected ones.

1.2 Motivation

Investigating how to effectively discover conflicting statements in a set of noisy
facts extracted from unstructured text could viewed as an initial step towards
building an automatic “fact checker” similar to a spelling or grammar checker.
If we can achieve high precision and recall, in addition to constructing a reliable
knowledge base of generally true facts, then we can automatically evaluate facts
extracted from sources such as e-mail, blogs, documents,

1.3 Functional Relations

Functional relations are those where one argument to the relation is a function
of the other. Invented(person, thing) is an example of a functional relation
because for a given thing, it can only have been invented by one person1 For

∗A pdf version is available here
1There are of course exceptions, for example Calculus was independently “invented” by

both Newton and Leibniz

1

http://turingc.cs.washington.edu:1234/conflict.pl?pred=invented&n=100000
http://www.cs.washington.edu/homes/aritter/574proposal/proposal.pdf

Emoticons were invented by Scott Fahlman on the CMU bulletin board system
Vladimir Nabokov invented emoticons!

Table 1: Two conflicting sentences found for the functional relation, Invented

Wikipedia: André Gide death place Paris
TextRunner André Gide died in Paris

Table 2: Matching Wikipedia infobox attributes to TextRunner predicates

Invented, the person argument can be thought of as a key for the relation.
As an example, consider the two conflicting sentences in table 1 which were
automatically detected as a potential conflict using TextRunner.

2 Milestones / Decomposition

The project will proceed in 4 steps. Each is described below:

2.1 Week 1: Generate a large database of functional rela-
tions

In order to discover conflicts between arbitrary functional relations, we need
to know which relations are functional. Many hand-built ontologies explicitly
label functional relations. In addition, most Wikipedia infobox attributes are
functional (we can easily weed out attributes which have more than one value
per article). For the project, I am planning on investigating the use of functional
relations from infoboxes, and ResearchCyc.

2.2 Weeks 2-3: Map functional relations to TextRunner
predicates (Milestone 1)

The names of attributes used in Cyc and infoboxes are in a very different form
than those used by TextRunner. For example the infobox class Writer con-
tains an attribute death place, which does not match the TextRunner predi-
cate died in.

To solve this problem I plan to query TextRunner with instances of the
class. As an example consider the death place infobox attribute from the article
on André Gide and the associated TextRunner triple which expresses the same
information (Table 2). This example suggests that by querying TextRunner
with instances of the functional attributes from Wikipedia infoboxes, we should
be able to map these non-textual attribute names to the more textual form of
TextRunner’s predicates.

2

http://www.myemoticons.com/about/about_emoticons.htm
http://corivax.livejournal.com/
http://turingc.cs.washington.edu:1234/conflict.pl?pred=invented&n=100000

2.3 Weeks 4-5: Discover conflicting statements between
functional relations (Milestone 2)

Once we have a large database of functional relations which have been mapped to
TextRunner predicates, we can simply collect all triples from TextRunner
which match these predicates, group them by their key argument (for example
group all triples of the form (André Gide, died in, X) together to build groups
of potential conflicts.

Some work will need to be done to filter out synonyms, anaphora, and ex-
tractor errors. I will likely only have time to do some simple heuristic-based
filtering within the scope of the course project, however, future work could use
a self-supervised machine learning approach. Because conflicts found between
high quality reliable sources, such as Wikipedia articles or news text are likely to
be erroneous, they could be used as negative training examples. Similarly, con-
flicts between more opinionated sources such as blogs could be used as positive
examples.

2.4 Week 6: Build a web interface to display the results

To display results I will build an index of conflicting statements which is query-
able by key attribute, non-key or both. Results will be displayed in a similar
manner to the prototype for Invented.

3 Evaluation

Recall will be difficult to measure directly, since it’s imposible to know exactly
how many sentences in TextRunner’s corpus conflict with eachother. Instead
I will try to estimate the total number of true conflicts discovered. To estimate
precision in addition to the total number of conflicts, I will hand-label a random
sample of the output of the system.

I will hand-label a selection of the functional TextRunner predicates which
were mapped from the infoboxes and Cyc, and I will try to evaluate whether
Cyc or the infoboxes were a better source of functional relations. I will also
plot histograms of the frequency of the predicates in TextRunner’s corpus in
addition to the number of conflicts found by each predicate and their accuracy.

3

http://turingc.cs.washington.edu:1234/conflict.pl?pred=invented&n=100000

	Introduction
	Problem
	Motivation
	Functional Relations

	Milestones / Decomposition
	Week 1: Generate a large database of functional relations
	Weeks 2-3: Map functional relations to TextRunner predicates (Milestone 1)
	Weeks 4-5: Discover conflicting statements between functional relations (Milestone 2)
	Week 6: Build a web interface to display the results

	Evaluation

